-
在神光III原型装置上利用8路6400 J/1 ns激光注入Φ1100 μm×1850 μm的黑腔内产生约200 eV的高温辐射场均匀辐照填充氘氘燃料的靶丸实现内爆. 实验中, 保持靶丸的内径一致, 通过改变靶丸烧蚀层厚度的方式实现不同收缩比的内爆. 通过闪烁体探测器、分幅相机等多套诊断设备获取了中子产额、X光bang-time (聚变反应产生X光时刻)、飞行轨迹、热斑形状等关键内爆参数. 结合一维数值模拟表明: 对于小收缩比内爆, 受到非一维因素的影响小, 其YOC1D(实验测量中子产额与干净一维数值模拟计算结果之比)可以达到34%; 对于中等收缩比内爆, 受到非一维因素的影响显著, 其YOC1D仅仅为2.3%.The plastic DD filled capsule implosion experiment is performed on Shenguang III prototype laser facility. One-dimensional hydrodynamic numerical simulations show that the implosion compression ratio can be controlled by changing the capsule ablator thickness. In experiments, two types of capsules are studied and most of important implosion parameters are collected, such as neutron yield, X-ray bang-time, trajectory, and shape of hot core. The comparison between post-simulations and experimental results is performed. In our experiments, the neutron yield is 6.8×107 and YOC1D reaches 34% for low compression ratio implosion; the neutron yield is 6.3×106 and YOC1D is only 2.3% for middle compression ratio implosion. Meantime, the shape of hot core obtains an extra higher Legendre partial (P2 is 18% and P4 is 5%). On another side, the trajectory and bang-time are compared with simulations well.
-
Keywords:
- inertial confinement fusion /
- compression ratio /
- implosion symmetry
[1] Lindl J 1995 Phys. Plasmas 2 3933
[2] Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[3] Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese) [Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]
[4] Rygg J R, Jones O S, Field J E, Barrios M A, Benedetti L R, Collins G W, Eder D C, Edwards M J, Kline J L, Kroll J J, Landen O L, Ma T, Pak A, Peterson J L, Raman K, Town R P J, Bradley D K 2014 Phys. Rev. Lett. 112 195001
[5] Town R P J, Bradley D K, Kritcher A, et al. 2014 Phys. Plasmas 21 056313
[6] Smalyuk V A, Barrios M, Caggiano J A, et al. 2014 Phys. Plasmas 21 056301
[7] Rinderknecht H G, Sio H, Li C K, Zylstra A B, Rosenberg M J, Amendt P, Delettrez J, Bellei C, Frenje J A, Gatu Johnson M, Seguin F H, Petrasso R D, Betti R, Glebov V Y, Meyerhofer D D, Sangster T C, Stoeckl C, Landen O, Smalyuk V A, Wilks S, Greenwood A, Nikroo A 2014 Phys. Rev. Lett. 112 135001
[8] Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001
[9] Landen O L, Edwards J, Haan S W, et al. 2011 Phys. Plasmas 18 051002
[10] Edwards M J, Lindl J D, Spears B K, et al. 2011 Phys. Plasmas 18 051003
[11] Lindl J, Landen O, Edwards J, Ed Moses, NIC Team 2014 Phys. Plasmas 21 020501
[12] Hurricane O A, Callahan D A, Casey D T, et al. 2014 Phys. Plasmas 21 056314
[13] Jiang S E, Miao W Y, Kuang L Y 2011 Acta Phys. Sin. 60 055206 (in Chinese) [江少恩, 缪文勇, 况龙钰 2011 60 055206]
[14] Jing L F, Huang T X, Jiang S E, Chen B L, Pu Y D, Hu F, Cheng S B 2012 Acta Phys. Sin. 61 105205 (in Chinese) [景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博 2012 61 105205]
[15] Teng J, Zhang T K, Wu B, Pu Y D, Hong W, Shan L Q, Zhu B, He W H, Lu F, Wen X L, Zhou W M, Cao L F, Jiang S E, Gu Y Q 2014 Chin. Phys. B 23 075207
[16] Kang D G, Gao Y M, Huang T X, Wang F, Peng X S, Chen J B, Zheng W D, Jiang S E, Ding Y K 2012 High Power Laser and Particle Beams 24 2110 (in Chinese) [康洞国, 高耀明, 黄天晅, 王峰, 彭晓世, 陈家斌, 郑无敌, 江少恩, 丁永坤 2012 强激光与粒子束 24 2110]
[17] Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys. B 22 115204
-
[1] Lindl J 1995 Phys. Plasmas 2 3933
[2] Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[3] Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese) [Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]
[4] Rygg J R, Jones O S, Field J E, Barrios M A, Benedetti L R, Collins G W, Eder D C, Edwards M J, Kline J L, Kroll J J, Landen O L, Ma T, Pak A, Peterson J L, Raman K, Town R P J, Bradley D K 2014 Phys. Rev. Lett. 112 195001
[5] Town R P J, Bradley D K, Kritcher A, et al. 2014 Phys. Plasmas 21 056313
[6] Smalyuk V A, Barrios M, Caggiano J A, et al. 2014 Phys. Plasmas 21 056301
[7] Rinderknecht H G, Sio H, Li C K, Zylstra A B, Rosenberg M J, Amendt P, Delettrez J, Bellei C, Frenje J A, Gatu Johnson M, Seguin F H, Petrasso R D, Betti R, Glebov V Y, Meyerhofer D D, Sangster T C, Stoeckl C, Landen O, Smalyuk V A, Wilks S, Greenwood A, Nikroo A 2014 Phys. Rev. Lett. 112 135001
[8] Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001
[9] Landen O L, Edwards J, Haan S W, et al. 2011 Phys. Plasmas 18 051002
[10] Edwards M J, Lindl J D, Spears B K, et al. 2011 Phys. Plasmas 18 051003
[11] Lindl J, Landen O, Edwards J, Ed Moses, NIC Team 2014 Phys. Plasmas 21 020501
[12] Hurricane O A, Callahan D A, Casey D T, et al. 2014 Phys. Plasmas 21 056314
[13] Jiang S E, Miao W Y, Kuang L Y 2011 Acta Phys. Sin. 60 055206 (in Chinese) [江少恩, 缪文勇, 况龙钰 2011 60 055206]
[14] Jing L F, Huang T X, Jiang S E, Chen B L, Pu Y D, Hu F, Cheng S B 2012 Acta Phys. Sin. 61 105205 (in Chinese) [景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博 2012 61 105205]
[15] Teng J, Zhang T K, Wu B, Pu Y D, Hong W, Shan L Q, Zhu B, He W H, Lu F, Wen X L, Zhou W M, Cao L F, Jiang S E, Gu Y Q 2014 Chin. Phys. B 23 075207
[16] Kang D G, Gao Y M, Huang T X, Wang F, Peng X S, Chen J B, Zheng W D, Jiang S E, Ding Y K 2012 High Power Laser and Particle Beams 24 2110 (in Chinese) [康洞国, 高耀明, 黄天晅, 王峰, 彭晓世, 陈家斌, 郑无敌, 江少恩, 丁永坤 2012 强激光与粒子束 24 2110]
[17] Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys. B 22 115204
计量
- 文章访问数: 6251
- PDF下载量: 178
- 被引次数: 0