-
Controllable quantum secure direct communication is an important branch of quantum communication. In this paper, we propose a controlled quantum secure direct communication protocol with channel capacity controllable based on a five-particle cluster state. To start with, the sender Alice prepares the five-particle cluster state sequence and inserts decoy photon randomly, and then sends two parts of the particle sequence to the receiver Bob and the controller Cindy, and meanwhile keeps one part of the particle sequence himself. After Bob and Cindy receive the particle sequence, Alice performs a Z-based single-particle measurement and publishes the measurement results and the position information of the decoy photon through the classical channel. According to the information published by Alice, Bob and Cindy remove the decoy photon and perform a Bell-state measurement to their own part particle sequence. Three sides of communication complete the first safety examination of the channel by checking the bit error rate of the measurement results. After that, the controller Cindy determines the channel capacity by selecting the measurement base (Z basis or X basis) to measure its own particle sequence, and then announces the measured results with classical channel. The sender Alice inserts decoy photon and codes the information by doing a unitary transformation to its own particle sequence and then sends the receiver Bob and tells him the position information of the decoy photon with classical channel. Combining the information published by Cindy with the information transmitted by Alice, Bob can complete the second safety examination of the channel and decode the information Alice has sent by removing decoy photon and performing a Bell-state measurement of his own two groups of particle with appropriate rules. Through an analysis of the entangled structural properties of the five-particle cluster state, it has been confirmed that this protocol is designed to make full use of the entanglement properties of the five-particle cluster in different entangled structures. Therefore the protocol can obviously be generalized into the two-way controlled quantum secure direct communication by simply changing the rules of the measurement and the particles used for unitary coding. Through analyzing the security of this protocol, it reveals that this protocol can effectively both prevent eavesdroppers from eavesdropping useful information and monitor this kind of act, and therefore the controlled quantum secure direct communication can theoretically be established in a certain noise environment.
-
Keywords:
- Bell-state measurement /
- five-particle cluster state /
- unitary transformation /
- controlled quantum secure direct communication
[1] Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China:Phys. Mech. Astron. 41 332(in Chinese)[龙桂鲁, 王川, 李岩松, 邓富国2011中国科学:物理力学天文学 41 332]
[2] Long G L, Qin G Q 2014 Phys. Eng. 24 3(in Chinese)[龙桂鲁, 秦国卿2014物理与工程 24 3]
[3] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
[4] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
[5] Deng F G, Long G L 2004 Phys. Rev. A 69 052319
[6] Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305
[7] Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China:Phys. Mech. Astron. 54 942
[8] Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15
[9] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149
[10] Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831
[11] Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305
[12] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910
[13] Borhani M, Loss D 2005 Phys. Rev. A 71 032308
[14] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501
[15] Zou X B, Mathis W 2005 Phys. Rev. A 72 013809
[16] Yu L Z, Wu T 2013 Acta Photon. Sin. 42 623(in Chinese)[于立志, 吴韬2013光子学报 42 623]
[17] Li Y H, Liu J C, Nie Y Y 2010 Acta Photon. Sin. 39 2073(in Chinese)[李渊华, 刘俊昌, 聂义友2010光子学报 39 2073]
[18] Tian D Y, Tao Y J, Qin M 2008 Sci. China G:Phys. Mech. Astron. 38 1128(in Chinese)[田东平, 陶应娟, 秦猛2008中国科学G辑:物理力学天文学 38 1128]
[19] Li Y P, Wang T Y, Yi B Y 2014 Acta Photon. Sin. 43 0927002(in Chinese)[李艳平, 王天银, 易宝银2014光子学报 43 0927002]
[20] Sun X M, Zha X W, Qi J X 2013 Acta Phys. Sin. 62 230302(in Chinese)[孙新梅, 查新末, 祁建霞2013 62 230302]
[21] Nie Y Y, Hong Z H, Huang Y B, Yi X J, Li S S 2009 Int. J. Theor. Phys. 48 1485
[22] An Y 2013 Int. J. Theor. Phys. 52 3870
[23] Li Y H, Liu J C, Nie Y Y 2011 Acta Photon. Sin. 40 307(in Chinese)[李渊华, 刘俊昌, 聂义友2011光子学报 40 307]
[24] Wu L W, Ye Z Q 2014 Chin. J. Quantum Electron. 31 291(in Chinese)[吴柳雯, 叶志清2014量子电子学报 31 291]
[25] Zheng X Y 2016 Chin. J. Quantum Electron. 33 177(in Chinese)[郑晓毅2016量子电子学报 33 177]
[26] Wang D, Zha X W 2011 Chin. J. Quantum Electron. 28 687
[27] Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946
[28] Li J, Song D J, Guo X J, Jing B 2012 Chin. Phys. C 36 31
[29] Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Sci. Bull. 59 2541
[30] Gao F, Guo F Z, Wen Q Y 2008 Chin. Phys. Lett. 25 2766
[31] Cao W F, Yang Y G, Wen Q Y 2010 Sci. China:Phys. Mech. Astron. 53 1271
[32] Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W, Xiong J X 2016 Commun. Theor. Phys. 66 621
[33] Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049
[34] Li C Y, Li X H, Deng F G 2006 Chin. Phys. Lett. 23 2896
[35] Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359
[36] Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501
[37] Li X H 2015 Acta Phys. Sin. 64 160307(in Chinese)[李熙涵2015 64 160307]
[38] Lu H, Fung C H F, Ma X, Cai Q Y 2011 Phys. Rev. A 84 042344
-
[1] Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China:Phys. Mech. Astron. 41 332(in Chinese)[龙桂鲁, 王川, 李岩松, 邓富国2011中国科学:物理力学天文学 41 332]
[2] Long G L, Qin G Q 2014 Phys. Eng. 24 3(in Chinese)[龙桂鲁, 秦国卿2014物理与工程 24 3]
[3] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
[4] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
[5] Deng F G, Long G L 2004 Phys. Rev. A 69 052319
[6] Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305
[7] Gu B, Zhang C Y, Cheng G S, Huang Y G 2011 Sci. China:Phys. Mech. Astron. 54 942
[8] Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15
[9] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y 2007 Chin. Phys. 16 2149
[10] Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831
[11] Wang T J, Li T, Du F F, Deng F G 2011 Chin. Phys. Lett. 28 040305
[12] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910
[13] Borhani M, Loss D 2005 Phys. Rev. A 71 032308
[14] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501
[15] Zou X B, Mathis W 2005 Phys. Rev. A 72 013809
[16] Yu L Z, Wu T 2013 Acta Photon. Sin. 42 623(in Chinese)[于立志, 吴韬2013光子学报 42 623]
[17] Li Y H, Liu J C, Nie Y Y 2010 Acta Photon. Sin. 39 2073(in Chinese)[李渊华, 刘俊昌, 聂义友2010光子学报 39 2073]
[18] Tian D Y, Tao Y J, Qin M 2008 Sci. China G:Phys. Mech. Astron. 38 1128(in Chinese)[田东平, 陶应娟, 秦猛2008中国科学G辑:物理力学天文学 38 1128]
[19] Li Y P, Wang T Y, Yi B Y 2014 Acta Photon. Sin. 43 0927002(in Chinese)[李艳平, 王天银, 易宝银2014光子学报 43 0927002]
[20] Sun X M, Zha X W, Qi J X 2013 Acta Phys. Sin. 62 230302(in Chinese)[孙新梅, 查新末, 祁建霞2013 62 230302]
[21] Nie Y Y, Hong Z H, Huang Y B, Yi X J, Li S S 2009 Int. J. Theor. Phys. 48 1485
[22] An Y 2013 Int. J. Theor. Phys. 52 3870
[23] Li Y H, Liu J C, Nie Y Y 2011 Acta Photon. Sin. 40 307(in Chinese)[李渊华, 刘俊昌, 聂义友2011光子学报 40 307]
[24] Wu L W, Ye Z Q 2014 Chin. J. Quantum Electron. 31 291(in Chinese)[吴柳雯, 叶志清2014量子电子学报 31 291]
[25] Zheng X Y 2016 Chin. J. Quantum Electron. 33 177(in Chinese)[郑晓毅2016量子电子学报 33 177]
[26] Wang D, Zha X W 2011 Chin. J. Quantum Electron. 28 687
[27] Sun Z W, Du R G, Long D Y 2012 Int. J. Theor. Phys. 51 1946
[28] Li J, Song D J, Guo X J, Jing B 2012 Chin. Phys. C 36 31
[29] Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Sci. Bull. 59 2541
[30] Gao F, Guo F Z, Wen Q Y 2008 Chin. Phys. Lett. 25 2766
[31] Cao W F, Yang Y G, Wen Q Y 2010 Sci. China:Phys. Mech. Astron. 53 1271
[32] Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W, Xiong J X 2016 Commun. Theor. Phys. 66 621
[33] Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049
[34] Li C Y, Li X H, Deng F G 2006 Chin. Phys. Lett. 23 2896
[35] Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359
[36] Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501
[37] Li X H 2015 Acta Phys. Sin. 64 160307(in Chinese)[李熙涵2015 64 160307]
[38] Lu H, Fung C H F, Ma X, Cai Q Y 2011 Phys. Rev. A 84 042344
Catalog
Metrics
- Abstract views: 6843
- PDF Downloads: 129
- Cited By: 0