Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deterministic secure quantum communication with double-encoded single photons

Wei Yu-Yan Gao Zi-Kai Wang Si-Ying Zhu Ya-Jing Li Tao

Citation:

Deterministic secure quantum communication with double-encoded single photons

Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao
PDF
HTML
Get Citation
  • Quantum communication is an important branch of quantum technology. It can safely transmit private information between legitimate parties and its unconditional security is guaranteed by quantum physics. So far, deterministic secure quantum communication without entanglement usually transmits single photons in two-way quantum channels. We propose a deterministic secure quantum communication proposal, and it requires a one-way quantum channel and a classical channel. In our protocol, a sender encodes logical bits by using two conjugate bases consisting of the polarization and time-bin degrees of freedom of a photon and transmits it to a receiver over a quantum channel. Upon receiving this photon, the receiver measures it randomly in two bases and can decode the bit deterministically with the help of the sender. Any attack from eavesdroppers will be detected by the legitimate parties. Furthermore, this protocol can be implemented with linear-optic elements and single-photon detectors.
      Corresponding author: Li Tao, tao.li@njust.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180461) and the National Natural Science Foundation of China (Grant No. 11914171)
    [1]

    Wehner S, Elkouss D, Hanso R 2018 Science 362 eaam9288Google Scholar

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing Bangalore, India, December 10–12, 1984 p175

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [5]

    Guo P L, Dong C, He Y, Jing F, He W T, Ren B C, Li C Y, Deng F G 2020 Opt. Express 28 4611Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [10]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [11]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144Google Scholar

    [12]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [13]

    Li T, Gao Z K, Li Z H 2020 EPL 131 60001Google Scholar

    [14]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [15]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [16]

    Karlsson A, Koashi M, Imoto N 1999 Phys Rev. A 59 162Google Scholar

    [17]

    邓富国, 李熙涵, 李涛 2018 67 130301Google Scholar

    Deng F G, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [18]

    Gao Z K, Li T, Li Z H 2020 Sci. Chin. -Phys. Mech. Astron. 63 120311Google Scholar

    [19]

    Shimizu K, Imoto Y 1999 Phys. Rev. A 60 157Google Scholar

    [20]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [21]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601Google Scholar

    [22]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [23]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y 2007 Front. Phys. Chin. 2 251

    [24]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [25]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [26]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [27]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501Google Scholar

    [28]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301Google Scholar

    [29]

    Gao T, Yan F L, Wang Z X 2005 J. Phys. A:Gen. Phys. 38 5761Google Scholar

    [30]

    Elsayed T A 2020 Phys. Scr. 96 025101Google Scholar

    [31]

    Jeong Y C, Ji S W, Hong C, Park H S, Jang J 2020 Entropy 22 1268Google Scholar

    [32]

    Jiang D, Chen Y, Gu X, Xie L, Chen L 2017 Sci. Rep. 7 44934Google Scholar

    [33]

    Wang J D, Wei Z J, Zhang H, Qin X J, Liu X B, Zhang Z M, Liao C J, Liu S H 2010 J. Phys. B:At. Mol. Opt. Phys. 43 095504Google Scholar

    [34]

    Lu H, Fung C, Ma X, Cai QY 2011 Phys. Rev. A 84 042344Google Scholar

    [35]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [36]

    Henao C I, Serra R M 2015 Phys. Rev. A 92 052317Google Scholar

    [37]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [38]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [39]

    Kaneda F, Kwiat P G 2019 Sci. Adv. 5 eaaw8586Google Scholar

    [40]

    Hall M A, Altepeter J B, Kumar P 2011 Phys. Rev. Lett. 106 053901Google Scholar

    [41]

    Cao Y, Liang H, Yin J, Yong H L, Zhou F, Wu Y P, Ren J G, Li Y H, Pan G S, Yang T, Ma X, Peng C Z, Pan J W 2013 Opt. Express 21 27260Google Scholar

    [42]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [43]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46Google Scholar

    [44]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [45]

    郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 62 130303Google Scholar

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303Google Scholar

  • 图 1  量子逻辑比特制备示意图. HWP: 半波片, 光轴与水平方向的夹角$ \theta = 0 $, 穿过它的光子极化状态保持不变, $ \theta = $$ {\text{π}}/4 $, 对穿过它的光子执行以下操作: $\left| H \right\rangle \to \left| V \right\rangle, \;\left| V \right\rangle \to $$ \left| H \right\rangle$; $ {\text{SW}}i \left( {i = 1, \;2, \;3} \right) $: 开关, 处于T状态时, 光子直接透过器件, 处于R状态时, 光子将被反射; H1: 光轴角度为$ {\text{π}}/8 $的半波片, 对经过的光子进行以下操作: $\left| H \right\rangle \to \left| + \right\rangle, \left| V \right\rangle \to $$ \left| - \right\rangle$; $ {{{\rm{PBS1}}, \;{\rm{PBS2}}}} $: 极化分束器, 将透射$ \left| + \right\rangle $光子, 反射$ \left| - \right\rangle $光子; PM: 相位调制器, 产生$ \varphi = 0 $$ \varphi = {\text{π}} $的相位差; BS1: 50∶50分束器

    Figure 1.  Schematics of quantum logic qubit preparation. HWP: half wave plate with its axis aligned at $ \theta = 0 $($\theta = $$ {\text{π}}/4$) completes the transformations $ |H\rangle \to |H\rangle, |V\rangle \to |V\rangle $ ($ |H\rangle \to |V\rangle, |V\rangle \to |H\rangle $); $ {\text{SW}}i \left( {i = 1, \;2, \;3} \right) $: optical switch transmits (reflects) photons when it is set to modeT(R); H1 with its axis aligned at $ {\text{π}}/8 $completes the following transmissions: $ |H\rangle \to |+\rangle, |V\rangle \to |-\rangle $; $ {\text{PBS1}}\;{\text{and}}\;{\text{PBS2}} $: polarizing beam splitters that transmit (reflect) photons in state $ \left| + \right\rangle $($ \left| - \right\rangle $); PM: a phase modulator which introduces a phase $\varphi =0$ or $\varphi ={{ {\text{π}} }}$; BS1 : 50∶50 beam splitter.

    图 2  量子逻辑比特解码示意图. BS2: 50:50分束器; SW4: 开关, 透射$ {t_1} $模式的光子, 反射$ {t_0} $模式的光子; ${\rm{PBS3}}, \; {\rm{PBS4}}, $$ \;{\rm{PBS5}}, \;{\rm{PBS6}}$: 极化分束器($ {{{\rm{PBS3}}, \;{\rm{PBS4}}}} $透射$ \left| H \right\rangle $光子, 反射$ \left| V \right\rangle $光子, $ {{{\rm{PBS5}}, \;{\rm{PBS6}}}} $透射$ \left| {{ + }} \right\rangle $光子, 反射$ \left| - \right\rangle $光子); HWPS: 半波片, 将对光子进行如下操作: $ \left| H \right\rangle \to \left| V \right\rangle $, $ \left| V \right\rangle \to - \left| H \right\rangle $, $ \left| + \right\rangle \to \left| - \right\rangle $, $ \left| - \right\rangle \to - \left| + \right\rangle $; $ {\text{H2}}, \;{\rm{H3}} $: 光轴角度为$ {{{\text{π}} /8}} $的半波片, 对经过的光子进行以下操作: $ \left| H \right\rangle \to \left| + \right\rangle, \;\left| V \right\rangle \to \left| - \right\rangle $; ${{\rm{D}}_i}(i = 1, \cdots, 6)$: 单光子探测器.

    Figure 2.  Schematics of quantum logic qubit measurement. BS2: 50:50 beam splitter; SW4: switch transmits photons in $ {t_1} $ mode and reflects photons in $ {t_0} $ mode; ${\text{PBS3}}, \;{\text{PBS4}}, $$ \; {\text{PBS5}} \;{\text{and}}\;{\text{PBS6}}$: polarizing beam splitters. PBS3 and PBS4 transmit (reflect) photons in state $ \left| H \right\rangle $($ \left| V \right\rangle $). $ {\text{PBS5}}\;{\text{and}}\;{\text{PBS6}} $ transmit (reflect) photons in state $ \left| + \right\rangle $($ \left| - \right\rangle $). HWPS: half wave plate transforms the polarization of a photon passing it as follows:$ |H\rangle \to |V\rangle, |V\rangle \to -|H\rangle$, $ |+\rangle \to |-\rangle, |-\rangle \to -|+\rangle $. $ {\text{H2}}\;{\text{and}}\;{\text{H3}} $ with their axes aligned at $ {\text{π}}/8 $complete the following transmissions:$ |H\rangle \to |+\rangle, |V\rangle \to |-\rangle $.${{\rm{D}}_i}\;(i = 1,\cdots, 6)$: single-photon detectors.

    表 1  四种单光子态对应的探测器响应情况

    Table 1.  Clicks of detectors for four different single-photon states.

    量子态下路径右路径
    $ \left| {H{t_{{ + }}}} \right\rangle $$ {D_1}\left( {{t_0}} \right)/{D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $
    $ \left| {V{t_ - }} \right\rangle $$ {D_2}\left( {{t_0}} \right)/{D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right)/{D_5}\left( {{t_1}} \right) $
    $ \left| { + {t_0}} \right\rangle $$ {D_1}\left( {{t_0}} \right)/{D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $
    $ \left| { - {t_0}} \right\rangle $$ {D_1}\left( {{t_1}} \right)/{D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right)/{D_4}\left( {{t_1}} \right) $
    DownLoad: CSV

    表 2  Bob探测器响应的可能情况

    Table 2.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {1}/{4} $$ {1}/{4} $$ {1}/{4} $$ {1}/{4} $
    DownLoad: CSV

    表 3  Eve制备的光子态及概率

    Table 3.  State and probability of photons prepared by Eve.

    光子态$ \left| {H{t_ + }} \right\rangle $$ \left| { + {t_0}} \right\rangle $$ \left| { - {t_1}} \right\rangle $
    概率$ {1}/{2} $$ {1}/{4} $$ {1}/{4} $
    DownLoad: CSV

    表 4  Eve制备的光子引起的探测器响应的可能情况

    Table 4.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    DownLoad: CSV

    表 5  Bob探测器响应的可能情况

    Table 5.  Click probability of Bob’s detectors.

    响应$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $
    概率$1/{4}$$1/{4}$$1/{4}$$1/{4}$
    DownLoad: CSV

    表 6  Eve制备的光子态及概率

    Table 6.  State and probability of photons prepared by Eve.

    光子态$ \left| {V{t_ - }} \right\rangle $$ \left| { + {t_0}} \right\rangle $$ \left| { - {t_1}} \right\rangle $
    概率$1/{2}$$1/{4}$$1/{4}$
    DownLoad: CSV

    表 7  Eve制备的光子引起的探测器响应的可能情况

    Table 7.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    DownLoad: CSV

    表 8  Bob探测器响应的可能情况

    Table 8.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率${1}/{4}$${1}/{4}$${1}/{4}$${1}/{4}$
    DownLoad: CSV

    表 9  Eve制备的光子态及概率

    Table 9.  State and probability of photons prepared by Eve.

    光子态$ \left| { + {t_0}} \right\rangle $$ \left| {H{t_ + }} \right\rangle $$ \left| {V{t_ - }} \right\rangle $
    概率${1}/{2}$${1}/{4}$${1}/{4}$
    DownLoad: CSV

    表 10  Eve制备的光子引起的探测器响应的可能情况

    Table 10.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    DownLoad: CSV

    表 11  Bob探测器响应的可能情况

    Table 11.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $
    概率$1/{4}$$1/{4}$$1/{4}$$1/{4}$
    DownLoad: CSV

    表 12  Eve制备的光子态及概率

    Table 12.  State and probability of photons prepared by Eve.

    光子态$ \left| { - {t_1}} \right\rangle $$ \left| {H{t_ + }} \right\rangle $$ \left| {V{t_ - }} \right\rangle $
    概率$1/{2}$$1/{4}$$1/{4}$
    DownLoad: CSV

    表 13  Eve制备的光子引起的探测器响应的可能情况

    Table 13.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    DownLoad: CSV
    Baidu
  • [1]

    Wehner S, Elkouss D, Hanso R 2018 Science 362 eaam9288Google Scholar

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing Bangalore, India, December 10–12, 1984 p175

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [5]

    Guo P L, Dong C, He Y, Jing F, He W T, Ren B C, Li C Y, Deng F G 2020 Opt. Express 28 4611Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [10]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [11]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144Google Scholar

    [12]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [13]

    Li T, Gao Z K, Li Z H 2020 EPL 131 60001Google Scholar

    [14]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [15]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [16]

    Karlsson A, Koashi M, Imoto N 1999 Phys Rev. A 59 162Google Scholar

    [17]

    邓富国, 李熙涵, 李涛 2018 67 130301Google Scholar

    Deng F G, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [18]

    Gao Z K, Li T, Li Z H 2020 Sci. Chin. -Phys. Mech. Astron. 63 120311Google Scholar

    [19]

    Shimizu K, Imoto Y 1999 Phys. Rev. A 60 157Google Scholar

    [20]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [21]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601Google Scholar

    [22]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [23]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y 2007 Front. Phys. Chin. 2 251

    [24]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [25]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [26]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [27]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501Google Scholar

    [28]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301Google Scholar

    [29]

    Gao T, Yan F L, Wang Z X 2005 J. Phys. A:Gen. Phys. 38 5761Google Scholar

    [30]

    Elsayed T A 2020 Phys. Scr. 96 025101Google Scholar

    [31]

    Jeong Y C, Ji S W, Hong C, Park H S, Jang J 2020 Entropy 22 1268Google Scholar

    [32]

    Jiang D, Chen Y, Gu X, Xie L, Chen L 2017 Sci. Rep. 7 44934Google Scholar

    [33]

    Wang J D, Wei Z J, Zhang H, Qin X J, Liu X B, Zhang Z M, Liao C J, Liu S H 2010 J. Phys. B:At. Mol. Opt. Phys. 43 095504Google Scholar

    [34]

    Lu H, Fung C, Ma X, Cai QY 2011 Phys. Rev. A 84 042344Google Scholar

    [35]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [36]

    Henao C I, Serra R M 2015 Phys. Rev. A 92 052317Google Scholar

    [37]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [38]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [39]

    Kaneda F, Kwiat P G 2019 Sci. Adv. 5 eaaw8586Google Scholar

    [40]

    Hall M A, Altepeter J B, Kumar P 2011 Phys. Rev. Lett. 106 053901Google Scholar

    [41]

    Cao Y, Liang H, Yin J, Yong H L, Zhou F, Wu Y P, Ren J G, Li Y H, Pan G S, Yang T, Ma X, Peng C Z, Pan J W 2013 Opt. Express 21 27260Google Scholar

    [42]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [43]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46Google Scholar

    [44]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [45]

    郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 62 130303Google Scholar

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303Google Scholar

  • [1] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [2] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] Zhao Ning, Jiang Ying-Hua, Zhou Xian-Tao. Efficient quantum secure direct communication scheme based on single photons. Acta Physica Sinica, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [4] Nie Min, Wang Chao-Xu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Influence of snowfall on free-space quantum channel near earth surface and parameter simulation. Acta Physica Sinica, 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [5] Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] Shang Xiang-Jun, Ma Ben, Chen Ze-Sheng, Yu Ying, Zha Guo-Wei, Ni Hai-Qiao, Niu Zhi-Chuan. Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots. Acta Physica Sinica, 2018, 67(22): 227801. doi: 10.7498/aps.67.20180594
    [7] Liu Zhi-Hao, Chen Han-Wu. Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [9] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [10] Zhou Nan-Run, Song Han-Chong, Gong Li-Hua, Liu Ye. Tripartite quantum deterministic key distribution based on GHZ states. Acta Physica Sinica, 2012, 61(21): 214203. doi: 10.7498/aps.61.214203
    [11] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] Yang Lei, Ma Xiao-Xin, Cui Liang, Guo Xue-Shi, Li Xiao-Ying. Fiber-based narrow-band single-photon source with high heralding efficiency. Acta Physica Sinica, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [13] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [14] Quan Dong-Xiao, Pei Chang-Xing, Liu Dan, Zhao Nan. One-way deterministic secure quantum communication protocol based on single photons. Acta Physica Sinica, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [16] Wang Tian-Yin, Qin Su-Juan, Wen Qiao-Yan, Zhun Fu-Chen. Analysis and improvement of multiparty controlled quantum secure direct communication protocol. Acta Physica Sinica, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [17] Wang Jian, Chen Huang-Qing, Zhang Quan, Tang Chao-Jing. Multiparty controlled quantum secure direct communication protocol. Acta Physica Sinica, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] Feng MingMing, Qin XiaoLin, Zhou ChunYuan, Xiong Li, Ding LiangEn. Quantum random number generator based on polarization. Acta Physica Sinica, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [19] LIANG CHUANG, FU DONG-HAO, LIANG BING, LIAO JING, WU LING-AN, YAO DE-CHENG, Lü SHU-WANG. QUANTUM KEY DISTRIBUTION OVER 1.1km IN AN 850nm EXPERIMENTAL ALL-FIBER SYSTEM. Acta Physica Sinica, 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
    [20] LIAO JING, LIANG CHUANG, WEI YA-JUN, WU LING-AN, PAN SHAO-HUA, YAO DE-CHENG. TRUE RANDOM NUMBER GENERATOR BASED ON A PHOTON BEAMSPLITTER. Acta Physica Sinica, 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
Metrics
  • Abstract views:  5125
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2021
  • Accepted Date:  29 October 2021
  • Available Online:  22 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回
Baidu
map