搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题

刘志昊 陈汉武

引用本文:
Citation:

基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题

刘志昊, 陈汉武

Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons

Liu Zhi-Hao, Chen Han-Wu
PDF
导出引用
  • 最近,一种基于Bell态粒子和单光子混合的量子安全直接通信方案[ 65 230301(2016)]被提出.文章宣称一个量子态可以编码3比特经典信息,从而使得协议具有很高的信息传输效率.不幸的是,该协议存在信息泄露问题:编码在单光子上的3比特经典信息有2比特被泄露,而编码在Bell态上的3比特经典信息有1比特被泄露,所以它不是一个安全的直接量子通信方案.在保留原协议思想且尽可能少地更改原协议的基础上,我们提出一种改进的消息编码规则,从而解决信息泄露问题,使之成为一个高效、安全的量子通信协议.衷心希望研究者能对量子安全通信协议中信息泄露问题引起足够重视,设计真正安全的量子通信协议.
    Recently, a quantum secure direct communication (QSDC) protocol based on the mixture of Bell state particles and single photons[Acta Phys. Sin. 65 230301(2016)] was put forward. In this QSDC protocol, the single photons and the Bell states were both used as information carriers. To be specific, each Bell state as well as single photon was encoded by three bits of classical information. After the sender told the receiver how to measure the particles, the receiver could read out the secret message sent by the sender. Speciously, the information transmission efficiency of this protocol was high. Unfortunately, there exists the information leakage problem in this protocol. When the sender announces that the receiver uses the Z-basis to measure a single photon, everyone knows that the sent secret message is 000 or 001, that is, the first two bits are leaked out; when the sender announces that the receiver uses the X-basis to measure a single photon, everyone knows that the sent secret message is 010 or 011, that is, the first two bits are leaked out too; when the sender announces that the receiver uses the Bell-basis to measure a pair of particles from a Bell state, everyone knows that the sent secret message is 100, 101, 110 or 111, that is, the first bit is leaked out. In a word, two of the three bits of classical information encoded in a single photon, and one of the three bits of classical information encoded in a Bell state are leaked out. Therefore, this scheme is not secure. On the basis of keeping the original idea and changing the contents of the protocol as less as possible, we put forward an improved message encoding rule to solve the information leakage problem, that is, the single photon is only encoded by one bit of classical information, and the Bell state is only encoded by two bits of classical information. In fact, this makes the information capacity of the improved protocol achieves the Helovo bound. So it has high coding capacity. We hope researchers pay more attention to the information leakage problem in quantum secure communication protocols, and thus design truly secure ones.
      通信作者: 陈汉武, hw_chen@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61502101,61170321)、江苏省自然科学基金(批准号:BK20140651,BK20140823)、PAPD和CICAEET资助的课题.
      Corresponding author: Chen Han-Wu, hw_chen@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61502101,61170321),Natural Science Foundation of Jiangsu Province,China (Grant Nos.BK20140651,BK20140823),PAPD and CICAEET.
    [1]

    Fu Z, Sun X, Liu Q, Zhou L, Shu J 2015 IEICE Trans. Commun. E98B 190

    [2]

    Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S 2015 IEICE Trans. Inf. Syst. E98D 902

    [3]

    Fu Z, Huang F, Sun X, Vasilakos A, Yang C-N 2016 IEEE Transactions on Services Computing DOI:10.1109/TSC.2016.2622697

    [4]

    Fu Z, Ren K, Shu J, Sun X, Huang F 2016 IEEE Trans. Parallel Distrib. Syst. 27 2546

    [5]

    Fu Z, Sun X, Ji S, Xie G 2016 The 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2016), San Francisco, CA, 10-14 April, 2016 p1

    [6]

    Fu Z, Wu X, Guan C, Sun X, Ren K 2016 IEEE Trans. Inf. Foren. Sec. 11 2706

    [7]

    Xia Z, Wang X, Sun X, Wang Q 2016 IEEE Trans. Parallel Distrib. Syst. 27 340

    [8]

    Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K 2016 IEEE T. Inf. Foren. Sec. 11 2594

    [9]

    Chen X, Chen S, Wu Y 2017 J. Internet Technol. 18 91

    [10]

    Yuan C, Xia Z, Sun X 2017 J. Internet Technol. 18 209

    [11]

    Zhang Y S, Li C F, Guo G C 2001 Phys. Rev. A 6303 036301

    [12]

    Cai Q Y 2003 Phys. Rev. Lett. 91 109801

    [13]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [14]

    Song J, Zhang S 2007 Phys. Lett. A 360 746

    [15]

    Gao F, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 3189

    [16]

    Hao L, Li J, Long G 2010 Sci. China:Phys. Mech. Astron. 53 491

    [17]

    Liu Z H, Chen H W, Liu W J, Xu J, Li Z Q 2011 Int. J. Quantum. Inf. 9 1329

    [18]

    Liu Z H, Chen H W, Wang D, Li W Q 2014 Quantum Inf. Process. 13 1345

    [19]

    Liu Z H, Chen H W 2016 Chin. Phys. B 25 080308

    [20]

    Liu Z, Chen H, Liu W 2016 Int. J. Theor. Phys. 55 4564

    [21]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G:Phys. Mech. Astron. 51 559

    [22]

    Tan Y G, Cai Q Y 2008 Int. J. Quantum. Inf. 6 325

    [23]

    Liu Z H, Chen H W 2013 Chin. Phys. Lett. 30 079901

    [24]

    Liu Z H, Chen H W, Liu W J 2016 Chin. Phys. Lett. 33 070305

    [25]

    Liu Z H, Chen H W, Liu W J 2016 Int. J. Theor. Phys. 55 4681

    [26]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [27]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [28]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [29]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light:Sci. Appl. 5 e16144

    [30]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2016 arXiv:1609.09184

    [31]

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301 (in Chinese)[曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 65 230301])

    [32]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (10th Anniversary Edition) (New York:Cambridge University Press) p535

  • [1]

    Fu Z, Sun X, Liu Q, Zhou L, Shu J 2015 IEICE Trans. Commun. E98B 190

    [2]

    Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S 2015 IEICE Trans. Inf. Syst. E98D 902

    [3]

    Fu Z, Huang F, Sun X, Vasilakos A, Yang C-N 2016 IEEE Transactions on Services Computing DOI:10.1109/TSC.2016.2622697

    [4]

    Fu Z, Ren K, Shu J, Sun X, Huang F 2016 IEEE Trans. Parallel Distrib. Syst. 27 2546

    [5]

    Fu Z, Sun X, Ji S, Xie G 2016 The 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2016), San Francisco, CA, 10-14 April, 2016 p1

    [6]

    Fu Z, Wu X, Guan C, Sun X, Ren K 2016 IEEE Trans. Inf. Foren. Sec. 11 2706

    [7]

    Xia Z, Wang X, Sun X, Wang Q 2016 IEEE Trans. Parallel Distrib. Syst. 27 340

    [8]

    Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K 2016 IEEE T. Inf. Foren. Sec. 11 2594

    [9]

    Chen X, Chen S, Wu Y 2017 J. Internet Technol. 18 91

    [10]

    Yuan C, Xia Z, Sun X 2017 J. Internet Technol. 18 209

    [11]

    Zhang Y S, Li C F, Guo G C 2001 Phys. Rev. A 6303 036301

    [12]

    Cai Q Y 2003 Phys. Rev. Lett. 91 109801

    [13]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [14]

    Song J, Zhang S 2007 Phys. Lett. A 360 746

    [15]

    Gao F, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 3189

    [16]

    Hao L, Li J, Long G 2010 Sci. China:Phys. Mech. Astron. 53 491

    [17]

    Liu Z H, Chen H W, Liu W J, Xu J, Li Z Q 2011 Int. J. Quantum. Inf. 9 1329

    [18]

    Liu Z H, Chen H W, Wang D, Li W Q 2014 Quantum Inf. Process. 13 1345

    [19]

    Liu Z H, Chen H W 2016 Chin. Phys. B 25 080308

    [20]

    Liu Z, Chen H, Liu W 2016 Int. J. Theor. Phys. 55 4564

    [21]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G:Phys. Mech. Astron. 51 559

    [22]

    Tan Y G, Cai Q Y 2008 Int. J. Quantum. Inf. 6 325

    [23]

    Liu Z H, Chen H W 2013 Chin. Phys. Lett. 30 079901

    [24]

    Liu Z H, Chen H W, Liu W J 2016 Chin. Phys. Lett. 33 070305

    [25]

    Liu Z H, Chen H W, Liu W J 2016 Int. J. Theor. Phys. 55 4681

    [26]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [27]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [28]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [29]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light:Sci. Appl. 5 e16144

    [30]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2016 arXiv:1609.09184

    [31]

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301 (in Chinese)[曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 65 230301])

    [32]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (10th Anniversary Edition) (New York:Cambridge University Press) p535

  • [1] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案.  , 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案.  , 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [3] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案.  , 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [4] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [5] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态.  , 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯.  , 2021, (): . doi: 10.7498/aps.70.20210907
    [7] 荣民希, 辛向军, 李发根. 具有强安全性的指定验证者量子签名方案.  , 2020, 69(19): 190302. doi: 10.7498/aps.69.20200244
    [8] 尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川. 半导体自组织量子点量子发光机理与器件.  , 2018, 67(22): 227801. doi: 10.7498/aps.67.20180594
    [9] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案.  , 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [10] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案.  , 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [11] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信.  , 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [12] 尹逊汝, 马文平, 申冬苏, 王丽丽. 基于Bell态的三方量子密钥协商.  , 2013, 62(17): 170304. doi: 10.7498/aps.62.170304
    [13] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [14] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议.  , 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进.  , 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [16] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩.  , 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [17] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议.  , 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源.  , 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [19] 梁创, 符东浩, 梁冰, 廖静, 吴令安, 姚德成, 吕述望. 850nm光纤中1.1km量子密钥分发实验.  , 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
    [20] 廖静, 梁创, 魏亚军, 吴令安, 潘少华, 姚德成. 基于光量子的真随机源.  , 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
计量
  • 文章访问数:  7004
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-30
  • 修回日期:  2017-03-14
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map