-
针对传统量子安全直接通信方案中需提前假设通信双方合法性的问题, 提出一种带身份认证的基于GHZ态(一种涉及至少三个子系统或粒子纠缠的量子态)的量子安全直接通信方案. 该方案将GHZ态粒子分成三部分, 并分三次发送, 每一次都加入窃听检测粒子检测信道是否安全, 并在第二次发送的时候加入身份认证, 用以验证接收方的身份, 在第三次发送完粒子之后, 接收方将所有检测粒子抽取出来, 之后对GHZ态粒子做联合测量, 并通过原先给定的编码规则恢复原始信息. 本方案设计简单、高效, 无需复杂的幺正变换即可实现通信. 安全性分析证明, 该方案能抵御常见的内部攻击和外部攻击, 并且有较高的传输效率、量子比特利用率和编码容量, 最大的优势在于发送方发送信息的时候不需要假设接收方的合法性, 有较高的实际应用价值.Aiming at the problem that traditional quantum secure direct communication schemes need to assume the legitimacy of both parties in advance, a GHZ state (a quantum state involving at least three subsystems or particles entanglement) based quantum secure direct communication scheme with identity authentication is proposed. The scheme first encodes GHZ state particles into eight types, divides the particles into three parts, and sends them three times. Each time, eavesdropping is added to detect whether the particle detection channel is secure, and identity authentication is added when sending particles for the second time to verify the identity of the receiver. Specifically, according to the value of the ID key IDA, the specified particles (such as
$ |0\rangle $ particles or$ |+ \rangle $ particles) are found in the two particles. Then their positions are marked as L and they traverse down until all the identity keys are traversed, obtaining a position sequence L. After sending the two particles to Bob for eavesdropping detection, Bob measures the L position of the two particles on the corresponding basis according to the value of the identity key, the measurement results are coded, and compared with the identity key IDA to complete the identity authentication. After sending the particles for the third time. the receiver extracts all the detected particles, and then the GHZ state particles are jointly measured, and the original information is recovered through the previously given coding rules, so as to realize quantum safe direct communication. The design of this scheme is simple and efficient, and the communication can be realized without complex unitary transformation. The correctness analysis proves that the scheme is correct in theory. The security analyses of interception/measurement retransmission attack, Trojan horse attack, denial of service attack, auxiliary particle attack, identity impersonation attack, and other attacks prove that the scheme can resist common internal attacks and external attacks, and solve the problem of information leakage. The transmission efficiency of the scheme is 1, the quantum bit utilization is 1, and the coding capacity is a quantum state carrying 3 bits of information. Compared with some previous schemes, this scheme has obvious advantages in these three aspects. The biggest advantage is that the sender does not need to assume the legitimacy of the receiver when sending information, so it has high practical application value.-
Keywords:
- quantum secure direct communication /
- GHZ state /
- identity authentication /
- transmission efficiency
[1] Wiesner S 1983 Acm. Sigact. News 15 78
[2] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Omputers, Systems, and Signal Processing (New York: IEEE Press) p175
[3] Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar
[4] Almut B, Berthold-Georg E, Christian K, Harald W 2002 J. Phys. A 35 46
[5] Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar
[6] Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar
[7] Cai Q Y 2003 Phys. Rev. Lett. 91 266104Google Scholar
[8] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar
[9] Gao T, Yan F L, Wang Z X 2005 Chin. Phys. 14 893Google Scholar
[10] Dong Li, Xiu X M, Gao Y J, Chi F 2008 Commun. Theor. Phys. 6 1498
[11] Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 06 035
[12] Yan F L, Hai R H 2007 Commun. Theor. Phys. 47 629Google Scholar
[13] Lin S, Wen Q Y, Gao F, Zhu F Z 2008 Phys. Rev. A 78 064304Google Scholar
[14] Dong L, Xiu X M, Gao Y J, Chi F 2009 Commun. Theor. Phys. 51 08
[15] Hassanpour S, Houshmand M 2015 Quantum Information Processing 14 15
[16] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 65 230301Google Scholar
Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar
[17] 刘志昊, 陈汉武 2017 66 130304Google Scholar
Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar
[18] 周贤韬, 江英华 2022 激光技术 46 79Google Scholar
Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar
[19] 赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 08 30Google Scholar
Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technol. 08 30Google Scholar
[20] 江英华, 张仕斌, 昌燕, 杨帆, 杨敏 2018 量子电子学报 35 49Google Scholar
Jiang Y H, Zhang S B, Chang Y, Yang F, Yang M 2018 J. Quan. Electr. 35 49Google Scholar
[21] 江英华, 张仕斌, 杨帆, 昌燕, 张航 2017 激光与光电子学进展 54 454Google Scholar
Jiang Y H, Zhang S B, Yang F, Chang Y, Zhang H 2017 Prog. Laser and Optoelectr. 54 454Google Scholar
[22] 江英华, 张仕斌, 昌燕, 杨帆, 邵婷婷 2018 计算机应用研究 35 889Google Scholar
Jiang Y H, Zhang S B, Chang Y, Yang F, Shao T T 2018 Appl. Res. Compu. 35 889Google Scholar
[23] Jiang Y H, Zhang S B, Dai J Q 2018 Mod. Phys. Lett. B 32 1850125
[24] 江英华 2018 硕士学位论文 (成都: 成都信息工程大学)
Jiang Y H 2018 M. S. Thesis (Chengdu: Chengdu University of Information Engineering) (in Chinese)
[25] 赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar
Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar
[26] 龚黎华, 陈振泳, 徐良超, 周南润 2022 71 130304Google Scholar
Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar
[27] Liu D, Pei C X, Quan D X, Nan Z 2022 Chin. Phys. Lett. 27 050306Google Scholar
[28] Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar
[29] 权东晓, 裴昌幸, 刘丹, 赵楠 2010 59 2493Google Scholar
Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar
-
表 1 GHZ态粒子对应的编码
Table 1. Corresponding codes of GHZ state particles.
GHZ态 对应的编码 $\varphi_0=\dfrac{1}{\sqrt{2} } |000\rangle + |111\rangle_{123}$ 000 $\varphi_1=\dfrac{1}{\sqrt{2} }|001\rangle + |110\rangle_{123}$ 001 $\varphi_2=\dfrac{1}{\sqrt{2} }|010\rangle + |101\rangle_{123}$ 010 $\varphi_3=\dfrac{1}{\sqrt{2} }|100\rangle + |011\rangle_{123}$ 011 $\varphi_4=\dfrac{1}{\sqrt{2} } |100\rangle + |011\rangle_{123}$ 100 $\varphi_5=\dfrac{1}{\sqrt{2} } |010\rangle + |101\rangle_{123}$ 101 $\varphi_6=\dfrac{1}{\sqrt{2} } |001\rangle + |110\rangle_{123}$ 110 $\varphi_7=\dfrac{1}{\sqrt{2} }|000\rangle + |111\rangle_{123}$ 111 表 2 身份认证过程
Table 2. Identity authentication process.
S2 |+$\rangle $ |0$\rangle $ |0$\rangle $ |+$\rangle $ IDA 1 0 0 1 位置L 2 6 7 9 Bob正确选择
的测量基X基 Z基 Z基 X基 Bob测量结果 |+$\rangle $ |0$\rangle $ |0$\rangle $ |+$\rangle $ Bob(随机选择
的测量基)及
测量结果50%|+$\rangle $
25%|0$\rangle $
25%|1$\rangle $50%|0$\rangle $
25%|+$\rangle$
25%|–$\rangle $50%|0$\rangle $
25%|+$\rangle $
25%|–$\rangle $50%|+$\rangle $
25%|0$\rangle $
25%|1$\rangle $表 3 相似协议效率对比
Table 3. Efficiency comparison of similar protocols.
-
[1] Wiesner S 1983 Acm. Sigact. News 15 78
[2] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Omputers, Systems, and Signal Processing (New York: IEEE Press) p175
[3] Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar
[4] Almut B, Berthold-Georg E, Christian K, Harald W 2002 J. Phys. A 35 46
[5] Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar
[6] Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar
[7] Cai Q Y 2003 Phys. Rev. Lett. 91 266104Google Scholar
[8] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar
[9] Gao T, Yan F L, Wang Z X 2005 Chin. Phys. 14 893Google Scholar
[10] Dong Li, Xiu X M, Gao Y J, Chi F 2008 Commun. Theor. Phys. 6 1498
[11] Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 06 035
[12] Yan F L, Hai R H 2007 Commun. Theor. Phys. 47 629Google Scholar
[13] Lin S, Wen Q Y, Gao F, Zhu F Z 2008 Phys. Rev. A 78 064304Google Scholar
[14] Dong L, Xiu X M, Gao Y J, Chi F 2009 Commun. Theor. Phys. 51 08
[15] Hassanpour S, Houshmand M 2015 Quantum Information Processing 14 15
[16] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 65 230301Google Scholar
Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar
[17] 刘志昊, 陈汉武 2017 66 130304Google Scholar
Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar
[18] 周贤韬, 江英华 2022 激光技术 46 79Google Scholar
Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar
[19] 赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 08 30Google Scholar
Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technol. 08 30Google Scholar
[20] 江英华, 张仕斌, 昌燕, 杨帆, 杨敏 2018 量子电子学报 35 49Google Scholar
Jiang Y H, Zhang S B, Chang Y, Yang F, Yang M 2018 J. Quan. Electr. 35 49Google Scholar
[21] 江英华, 张仕斌, 杨帆, 昌燕, 张航 2017 激光与光电子学进展 54 454Google Scholar
Jiang Y H, Zhang S B, Yang F, Chang Y, Zhang H 2017 Prog. Laser and Optoelectr. 54 454Google Scholar
[22] 江英华, 张仕斌, 昌燕, 杨帆, 邵婷婷 2018 计算机应用研究 35 889Google Scholar
Jiang Y H, Zhang S B, Chang Y, Yang F, Shao T T 2018 Appl. Res. Compu. 35 889Google Scholar
[23] Jiang Y H, Zhang S B, Dai J Q 2018 Mod. Phys. Lett. B 32 1850125
[24] 江英华 2018 硕士学位论文 (成都: 成都信息工程大学)
Jiang Y H 2018 M. S. Thesis (Chengdu: Chengdu University of Information Engineering) (in Chinese)
[25] 赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar
Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar
[26] 龚黎华, 陈振泳, 徐良超, 周南润 2022 71 130304Google Scholar
Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar
[27] Liu D, Pei C X, Quan D X, Nan Z 2022 Chin. Phys. Lett. 27 050306Google Scholar
[28] Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar
[29] 权东晓, 裴昌幸, 刘丹, 赵楠 2010 59 2493Google Scholar
Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar
计量
- 文章访问数: 3505
- PDF下载量: 58
- 被引次数: 0