Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A ranking approach based on k-shell decomposition method by filtering out redundant link in weighted networks

Luo Shi-Long Gong Kai Tang Chao-Sheng Zhou Jing

Citation:

A ranking approach based on k-shell decomposition method by filtering out redundant link in weighted networks

Luo Shi-Long, Gong Kai, Tang Chao-Sheng, Zhou Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The k-shell decomposition method of identifying the influential nodes which accelerate spread or hinder propagation, plays an important role in analyzing the spreading performance of complex network, but it is too coarse in terms of ranking granularity. Recent study shows that the accuracy of the k-shell decomposition method in determining node coreness is significantly affected by the mutually densely connected local structures. Existing approach tries to filter out the confusion of the classical k-shell decomposition method, caused by such densely local structures, through redefining a diffusion importance value which is the number of out-leaving links at/from the nodes connected by a link. This value is used to quantify the potential influence of a link in spreading process. However, the existing approach is not suitable for ubiquitously weighted networks. In this paper, we develop a new ranking approach (filter-core) to identify the node spreading influence in weighted network. Here, we concern that the redundant links, although they are less important in the spreading process, form mutually densely connected local structures, which lead to the classical k-shell decomposition method unable to accurately determine the coreness of node in network. By redefining a new diffusion importance value for each link based on the weights of its connected nodes and the weight distribution, we filter out the redundant links which have a relatively low diffusion importance in the spreading process. After filtering out all redundant links and applying the classical k-shell decomposition method to the residual network, we obtain a new coreness for each node, which is more accurate to indicate spreading influence of node in the original network. Our approach is applied to three real weighted networks, i.e., the international trading network, the neural network of C. elegans, and the coauthorship network of scientists. And the susceptible-infected-recovered epidemic spreading model is used to make a comparison of performance between our approach and other three k-shell methods (including the weighted degree decomposition method, the s-core decomposition method, and the weighted k-shell method) in terms of four quantitative indices, i.e., the imprecision function, the standard deviation of infected fraction of max coreness node, the spreading time, and the number of recovered nodes at the end of spreading process. The experimental results show that our proposed approach is more accurate to identify the influential spreaders than the weighted degree decomposition method, the s-core decomposition method, and the weighted k-shell method, and also helps to more accurately decompose the network core structure for an optimal analysis in weighted network.
      Corresponding author: Gong Kai, gongkai1210@swufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61602331), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. JBK170133, JBK160130, JBK150503), the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 17ZB0434), and the Collaborative Innovation Center for Electronic Finance and Financial Regulation.
    [1]

    Wang X F, Li X, Chen G R 2012 Network Science:an Introduction (Beijing:Higher Education Press) pp3-18(in Chinese)[汪小帆, 李翔, 陈关荣2012网络科学导论(北京:高等教育出版社)第3–18页]

    [2]

    Liu H K, Zhou T 2007 Acta Phys. Sin. 56 106(in Chinese)[刘宏鲲, 周涛2007 56 106]

    [3]

    Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X, Zhang Y C 2016 Phys. Rep. 651 1

    [4]

    Liu C, Zhan X X, Zhang Z K, Sun G Q, Hui P M 2015 New J. Phys. 17 113045

    [5]

    Cohen R, Erez K, Benavraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682

    [6]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [7]

    Keeling M J, Rohani P 2008 Modeling Infectious Diseases in Humans and Animals (Princeton:Princeton University Press) p366

    [8]

    Gong K, Tang M, Hui P M, Zhang H F, Younghae D, Lai Y C 2013 Plos One 8 e83489

    [9]

    Liu C, Zhang Z K 2014 Commun. Nonlinear Sci. 19 896

    [10]

    Crucitti P, Latora V, Marchiori M, Rapisarda A 2004 Physica A 340 388

    [11]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901(in Chinese)[刘建国, 任卓明, 郭强, 汪秉宏2013 62 178901]

    [12]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175(in Chinese)[任晓龙, 吕琳媛2014科学通报 59 1175]

    [13]

    Rombach M P, Porter M A, Fowler J H, Mucha P J 2014 Siam J. Appl. Math. 74 167

    [14]

    Bassett D S, Wymbs N F, Rombach M P, Porter M A, Mucha P J, Grafton S T 2013 Plos Comput. Biol. 9 e1003171

    [15]

    Liu J G, Ren Z M, Guo Q, Chen D B 2014 Plos One 9 e104028

    [16]

    Seidman S B 1983 Social Networks 5 269

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [18]

    Chen D, L L, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [19]

    Freeman L 1977 Sociometry 40 35

    [20]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031

    [21]

    Hou B, Yao Y, Liao D 2012 Physica A 391 4012

    [22]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [23]

    Hu Q C, Yin Y S, Ma P F, Gao Y, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101(in Chinese)[胡庆成, 尹龑燊, 马鹏斐, 高旸, 张勇, 邢春晓2013 62 140101]

    [24]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902(in Chinese)[任卓明, 刘建国, 邵凤, 胡兆龙, 郭强2013 62 108902]

    [25]

    Cao J X, Dong D, Xu S, Zheng X, Liu B, Luo J Z 2015 Chin. J. Comput. 38 238(in Chinese)[曹玖新, 董丹, 徐顺, 郑啸, 刘波, 罗军舟2015计算机学报 38 238]

    [26]

    Garas A, Schweitzer F, Havlin S 2012 New J. Phys. 14 83030

    [27]

    Eidsaa M, Almaas E 2013 Phys. Rev. E 88 062819

    [28]

    Wei B, Liu J, Wei D, Gao C, Deng Y 2015 Physica A 420 277

    [29]

    Liu Y, Tang M, Zhou T, Do Y 2015 Sci. Rep. 5 9602

    [30]

    Liu Y, Tang M, Zhou T, Do Y 2015 Sci. Rep. 5 13172

    [31]

    Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A 2004 Proc. Natl. Acad. Sci. USA 101 3747

    [32]

    Yan W, Zhou T, Wang J, Fu Z Q, Wang B H 2005 Chin. Phys. Lett. 22 510

    [33]

    Hu H B, Wang X F 2008 Physica A 387 3769

    [34]

    Kendall M G 1938 Biometrika 30 81

    [35]

    Batagelj V, Zaversnik M 2003 arXiv:cs/0310049v1

    [36]

    Lee K M, Yang J S, Kim G, Lee J, Goh K I, Kim I M 2011 Plos One 6 e18443

    [37]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [38]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [39]

    Saramäki J, Kivelä M, Onnela J P, Kaski K, Kertész J 2007 Phys. Rev. E 75 027105

    [40]

    Li X, Jin Y Y, Chen G R 2003 Physica A 328 287

    [41]

    Yan G, Fu Z Q, Chen G 2008 Eur. Phys. J. B 65 591

  • [1]

    Wang X F, Li X, Chen G R 2012 Network Science:an Introduction (Beijing:Higher Education Press) pp3-18(in Chinese)[汪小帆, 李翔, 陈关荣2012网络科学导论(北京:高等教育出版社)第3–18页]

    [2]

    Liu H K, Zhou T 2007 Acta Phys. Sin. 56 106(in Chinese)[刘宏鲲, 周涛2007 56 106]

    [3]

    Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X, Zhang Y C 2016 Phys. Rep. 651 1

    [4]

    Liu C, Zhan X X, Zhang Z K, Sun G Q, Hui P M 2015 New J. Phys. 17 113045

    [5]

    Cohen R, Erez K, Benavraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682

    [6]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [7]

    Keeling M J, Rohani P 2008 Modeling Infectious Diseases in Humans and Animals (Princeton:Princeton University Press) p366

    [8]

    Gong K, Tang M, Hui P M, Zhang H F, Younghae D, Lai Y C 2013 Plos One 8 e83489

    [9]

    Liu C, Zhang Z K 2014 Commun. Nonlinear Sci. 19 896

    [10]

    Crucitti P, Latora V, Marchiori M, Rapisarda A 2004 Physica A 340 388

    [11]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901(in Chinese)[刘建国, 任卓明, 郭强, 汪秉宏2013 62 178901]

    [12]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175(in Chinese)[任晓龙, 吕琳媛2014科学通报 59 1175]

    [13]

    Rombach M P, Porter M A, Fowler J H, Mucha P J 2014 Siam J. Appl. Math. 74 167

    [14]

    Bassett D S, Wymbs N F, Rombach M P, Porter M A, Mucha P J, Grafton S T 2013 Plos Comput. Biol. 9 e1003171

    [15]

    Liu J G, Ren Z M, Guo Q, Chen D B 2014 Plos One 9 e104028

    [16]

    Seidman S B 1983 Social Networks 5 269

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [18]

    Chen D, L L, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [19]

    Freeman L 1977 Sociometry 40 35

    [20]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031

    [21]

    Hou B, Yao Y, Liao D 2012 Physica A 391 4012

    [22]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [23]

    Hu Q C, Yin Y S, Ma P F, Gao Y, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101(in Chinese)[胡庆成, 尹龑燊, 马鹏斐, 高旸, 张勇, 邢春晓2013 62 140101]

    [24]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902(in Chinese)[任卓明, 刘建国, 邵凤, 胡兆龙, 郭强2013 62 108902]

    [25]

    Cao J X, Dong D, Xu S, Zheng X, Liu B, Luo J Z 2015 Chin. J. Comput. 38 238(in Chinese)[曹玖新, 董丹, 徐顺, 郑啸, 刘波, 罗军舟2015计算机学报 38 238]

    [26]

    Garas A, Schweitzer F, Havlin S 2012 New J. Phys. 14 83030

    [27]

    Eidsaa M, Almaas E 2013 Phys. Rev. E 88 062819

    [28]

    Wei B, Liu J, Wei D, Gao C, Deng Y 2015 Physica A 420 277

    [29]

    Liu Y, Tang M, Zhou T, Do Y 2015 Sci. Rep. 5 9602

    [30]

    Liu Y, Tang M, Zhou T, Do Y 2015 Sci. Rep. 5 13172

    [31]

    Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A 2004 Proc. Natl. Acad. Sci. USA 101 3747

    [32]

    Yan W, Zhou T, Wang J, Fu Z Q, Wang B H 2005 Chin. Phys. Lett. 22 510

    [33]

    Hu H B, Wang X F 2008 Physica A 387 3769

    [34]

    Kendall M G 1938 Biometrika 30 81

    [35]

    Batagelj V, Zaversnik M 2003 arXiv:cs/0310049v1

    [36]

    Lee K M, Yang J S, Kim G, Lee J, Goh K I, Kim I M 2011 Plos One 6 e18443

    [37]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [38]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [39]

    Saramäki J, Kivelä M, Onnela J P, Kaski K, Kertész J 2007 Phys. Rev. E 75 027105

    [40]

    Li X, Jin Y Y, Chen G R 2003 Physica A 328 287

    [41]

    Yan G, Fu Z Q, Chen G 2008 Eur. Phys. J. B 65 591

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [3] Ren Zhuo-Ming. Node influence of the dynamic networks. Acta Physica Sinica, 2020, 69(4): 048901. doi: 10.7498/aps.69.20190830
    [4] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [5] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [6] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [7] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [8] Min Lei, Liu Zhi, Tang Xiang-Yang, Chen Mao, Liu San-Ya. Evaluating influential spreaders in complex networks by extension of degree. Acta Physica Sinica, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [9] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [10] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [11] Wang Dan, Hao Bin-Bin. A weighted scale-free network model with high clustering and its synchronizability. Acta Physica Sinica, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [12] Dai Cun-Li, Wu Wei, Zhao Yan-Yan, Yao Xue-Xia, Zhao Zhi-Gang. Effect of weight distribution on the synchronization of weighted generalized local-world networks. Acta Physica Sinica, 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [13] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [14] Wang Dan, Jing Yuan-Wei, Hao Bin-Bin. Effect of weighted scheme on synchronizability based on different network structures. Acta Physica Sinica, 2012, 61(17): 170513. doi: 10.7498/aps.61.170513
    [15] Wang Dan, Jin Xiao-Zheng. On weightd scale-free network model with tunable clustering and congesstion. Acta Physica Sinica, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [16] Lü Ling, Meng Le, Guo Li, Zou Jia-Rui, Yang Ming. Projective synchronization of a weighted network in a laser spatiotemporal chaos model. Acta Physica Sinica, 2011, 60(3): 030506. doi: 10.7498/aps.60.030506
    [17] Tian Liu, Di Zeng-Ru, Yao Hong. Effect of distribution of weight on the efficiency of weighted networks. Acta Physica Sinica, 2011, 60(2): 028901. doi: 10.7498/aps.60.028901
    [18] Shen Yi, Xu Huan-Liang. The evaluation function of weight similarity and its application in community detection in weighted networks. Acta Physica Sinica, 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [19] Li Yan, Lü Ling, Luan Ling. Lag synchronization of spatiotemporal chaos in a weighted network with ring connection. Acta Physica Sinica, 2009, 58(7): 4463-4468. doi: 10.7498/aps.58.4463
    [20] Pan Zao-Feng, Wang Xiao-Fan. A weighted scale-free network model with large-scale tunable clustering. Acta Physica Sinica, 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
Metrics
  • Abstract views:  6427
  • PDF Downloads:  265
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2016
  • Accepted Date:  21 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map