搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bell态粒子和单光子混合的量子安全直接通信方案

曹正文 赵光 张爽浩 冯晓毅 彭进业

引用本文:
Citation:

基于Bell态粒子和单光子混合的量子安全直接通信方案

曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业

Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons

Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye
PDF
导出引用
  • 为了提高量子安全直接通信的效率,本文提出了一种基于Bell态粒子和单光子混合的量子安全直接通信方案.该方案中Alice将所有Bell态粒子划分为两个序列SA和SB,先将SB发给Bob进行第一次窃听检测,检测结果表示量子信道安全后再将信息序列编码在序列SA和单光子序列SS混合的量子态序列上;然后将已编码序列经过顺序重排和添加单光子检测粒子后发给合法接收方Bob.该方案避免了复杂的U变换,简化了方案的实现过程.同时顺序重排和检测粒子的结合保证了方案的安全性.另外3 bits经典信息加载在一个态上的编码规则大大提高了编码容量,从而使信息传输效率也得到提高.
    By studying the properties of the mixture of Bell state particles and single photons,in the paper we design a quantum code scheme with high coding capacity,and propose a novel quantum secure direct communication protocol with high transmission efficiency.Alice prepares Bell state particles and single photons,and divides Bell state particles into two sequences SA and SB.SB is sent to Bob for the first security check through using quantum correlation properties of particles.When the check result shows that the quantum channel is safe,by using the designed quantum code scheme, Alice encodes her classical message on the mixed quantum state sequence of Bell sequence SA and single photon sequence SS.Then,some single photons that are used for security check are re-inserted randomly into the encoded sequence,and the order of particles is rearranged to ensure checking Eve's attack.Alice sends the new sequence to Bob.Bob delays and receives it.And then,the quantum channel conducts the second-time security check.The transmission error rate is calculated,and if the error rate is lower than the tolerance threshold,the channel is safe.Bob decodes and reads Alice's message.The first security check is to determine whether quantum channel is safe.The second security check is to test whether there are eavesdroppers during information transmission.Safety analysis is done by applying the quantum information theory for the proposed protocol.The error rate introduced by Eve and the amount of information by Eve are calculated.It is shown that this pro-tocol can effectively resist measurement-resend attack,intercept-resend attack, auxiliary particle attack,denial of service attack and Trojan attack.Among them,auxiliary particle attack is analyzed in detail.The transmission efficiency and coding capacity are also analyzed.The transmission efficiency is 2,the quantum bit rate is 1,and the coding capacity is that a quantum state can encode three bits of classical messages.We also compare the proposed protocol with many existing popular protocols in the sense of efficiency,e.g.,Ping-Pong protocol, Deng F G et al.'s two-step and one-pad-time quantum secure direct communication protocol,Wang J et al.'s quantum secure direct communication protocol based on entanglement swapping and Quan D X et al.'s one-way quantum secure direct communication protocol based on single photon.It is proved that this proposed protocol has higher transmission efficiency.In addition,neither complex U operation nor entanglement swapping is used,and implementation process is simplified.However,this protocol is devoted to theoretical research of quantum secure direct communication.There are still some difficulties in the practical application.For example,the storage technology of quantum states is not mature at present.It is not easy to prepare and measure Bell state particles nor to combine them with single photons,and so on.The implementation of this protocol depends on the development of quantum technology in the future.
      通信作者: 曹正文, caozhw@nwu.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号:2013JM8036)资助的课题.
      Corresponding author: Cao Zheng-Wen, caozhw@nwu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province,China (Grant No. 2013JM8036).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York:IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Wang X B 2005 Phys. Rev. A 72 012322

    [4]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [5]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A:Math. Gen. 35 L407

    [6]

    Bostrom K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [7]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [10]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305

    [11]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Journal of National University of Defense Technology 29 56 (in Chinese)[王剑, 陈皇卿, 张权等, 唐朝京2007国防科技大学学报29 56]

    [13]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese)[王剑, 陈皇卿, 张权, 唐朝京2007 56 673]

    [14]

    Wang T Y, Qin H J, Wen Q Y, Zhu P C 2008 Acta Phys. Sin. 57 7452 (in Chinese)[王天银, 秦海娟, 温巧燕, 朱甫臣2008 57 7452]

    [15]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese)[权东晓, 裴昌辛, 刘丹, 赵楠2010 59 2493]

    [16]

    Li K, Huang X Y, Teng J H, Li Z H 2012 Journal of Electronics Information Technology 34 1917 (in Chinese)[李凯, 黄晓英, 滕吉红, 李振华2012电子与信息学报34 1917]

    [17]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [18]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [19]

    Wang J, Zhang S, Zhang Q, Zhang S L 2009 Journal of National University of Defense Technology 31 51 (in Chinese)[王剑, 张盛, 张权, 张盛林2009国防科技大学学报31 51]

  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York:IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Wang X B 2005 Phys. Rev. A 72 012322

    [4]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [5]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A:Math. Gen. 35 L407

    [6]

    Bostrom K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [7]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [10]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305

    [11]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Journal of National University of Defense Technology 29 56 (in Chinese)[王剑, 陈皇卿, 张权等, 唐朝京2007国防科技大学学报29 56]

    [13]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese)[王剑, 陈皇卿, 张权, 唐朝京2007 56 673]

    [14]

    Wang T Y, Qin H J, Wen Q Y, Zhu P C 2008 Acta Phys. Sin. 57 7452 (in Chinese)[王天银, 秦海娟, 温巧燕, 朱甫臣2008 57 7452]

    [15]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese)[权东晓, 裴昌辛, 刘丹, 赵楠2010 59 2493]

    [16]

    Li K, Huang X Y, Teng J H, Li Z H 2012 Journal of Electronics Information Technology 34 1917 (in Chinese)[李凯, 黄晓英, 滕吉红, 李振华2012电子与信息学报34 1917]

    [17]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [18]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [19]

    Wang J, Zhang S, Zhang Q, Zhang S L 2009 Journal of National University of Defense Technology 31 51 (in Chinese)[王剑, 张盛, 张权, 张盛林2009国防科技大学学报31 51]

  • [1] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案.  , 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案.  , 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [3] 赵良超. SESRI 300 MeV同步加速器注入线的传输效率与接受效率.  , 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [4] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案.  , 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [6] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态.  , 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [7] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯.  , 2021, (): . doi: 10.7498/aps.70.20210907
    [8] 尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川. 半导体自组织量子点量子发光机理与器件.  , 2018, 67(22): 227801. doi: 10.7498/aps.67.20180594
    [9] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案.  , 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [10] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题.  , 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [11] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信.  , 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [12] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [13] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议.  , 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [14] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进.  , 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [15] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议.  , 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [16] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算.  , 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [17] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源.  , 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [18] 梁创, 符东浩, 梁冰, 廖静, 吴令安, 姚德成, 吕述望. 850nm光纤中1.1km量子密钥分发实验.  , 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
    [19] 廖静, 梁创, 魏亚军, 吴令安, 潘少华, 姚德成. 基于光量子的真随机源.  , 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
    [20] 匡锦瑜, 邓昆, 黄荣怀. 利用时空混沌同步进行数字加密通信.  , 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
计量
  • 文章访问数:  7502
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-08-30
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map