Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-induced metallization transition in Mg2Ge

Wang Jun-Long Zhang Lin-Ji Liu Qi-Jun Chen Yuan-Zheng Shen Ru He Zhu Tang Bin Liu Xiu-Ru

Citation:

Pressure-induced metallization transition in Mg2Ge

Wang Jun-Long, Zhang Lin-Ji, Liu Qi-Jun, Chen Yuan-Zheng, Shen Ru, He Zhu, Tang Bin, Liu Xiu-Ru
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Mg2Ge with anti-fluorite structure at ambient pressure is characterized as a narrow band semiconductor and increasing pressure results in a decrease of the gap. In this work, the band structure of anti-fluorite Mg2Ge under high pressure is studied by first principles calculations, which suggests that Mg2Ge becomes metallic at 7.5 GPa as a result of band gap closure. The enthalpy difference between anti-fluorite phase and anti-cotunnite phase under high pressure is calculated by the first-principles plane-wave method within the pseudopotential and generalized gradient approximation. The results show that Mg2Ge undergoes a phase transition from the anti-fluorite structure to anti-cotunnite structure at 11.0 GPa. Then we investigate experimentally the pressure-induced metallization of Mg2Ge by electric resistance measurement in strip anvil cell and Raman spectroscopy by diamond anvil cell. The pressure distribution is homogeneous along the central line of the strip anvil and the pressure is changed ccontinuously by using a hydraulically driven two-anvil press. Raman scattering experiment is performed at pressure up to 21.1 GPa on a back scattered Raman spectrometer. The wavelength of excitation laser is 532 nm. No pressure-transmitting is used and pressure is determined by the shift of the ruby luminescence line. It is found that neither a discontinuous change of electrical resistance at 8.7 GPa nor Raman vibration modes of Mg2Ge appear above 9.8 GPa. The disappearance of the Raman vibration mode is ascribed to the metallization since the the free carrier concentration rises after metallization has prevented the laser light from penetrating into the sample. We compare these results with those of resistivity measurements in diamond anvil cell. Li et al.[2015 Appl. Phys. Lett. 107 142103] reported that Mg2Ge becomes metallic phase at 7.4 GPa and is transformed into metallic anti-cotunnite phase at around 9.5 GPa. We speculate that the discontinuous change in electric resistance at 8.7 GPa is ascribed to the gap closure of anti-fluorite phase and Mg2Ge may transform into the anti-cotunnite phase above 9.8 GPa.
      Corresponding author: Liu Xiu-Ru, xrliu@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004163) and the Fundamental Research Funds for Central Universities (Grant Nos. 2682014ZT31, 2682016CX065).
    [1]

    Tani J, Kido H 2008 Comp. Mater. Sci. 42 531

    [2]

    Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753

    [3]

    Guo S D 2016 Eur. Phys. J. B 89 1

    [4]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]

    [5]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633

    [6]

    Martin J J 1972 J. Phys. Chem. Solids 33 1139

    [7]

    Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253

    [8]

    Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138

    [9]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]

    [10]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]

    [11]

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]

    [12]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [13]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24

    [14]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

    [15]

    Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789

    [16]

    Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103

    [17]

    Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]

    [18]

    Getting I C 1998 Metrologia 35 119

    [19]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [20]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [21]

    Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673

    [22]

    Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045

    [23]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [27]

    Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250

    [28]

    Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409

    [29]

    Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163

    [30]

    Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504

    [31]

    Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251

    [32]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [33]

    Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433

    [34]

    Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697

    [35]

    Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022

  • [1]

    Tani J, Kido H 2008 Comp. Mater. Sci. 42 531

    [2]

    Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753

    [3]

    Guo S D 2016 Eur. Phys. J. B 89 1

    [4]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]

    [5]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633

    [6]

    Martin J J 1972 J. Phys. Chem. Solids 33 1139

    [7]

    Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253

    [8]

    Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138

    [9]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]

    [10]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]

    [11]

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]

    [12]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [13]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24

    [14]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

    [15]

    Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789

    [16]

    Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103

    [17]

    Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]

    [18]

    Getting I C 1998 Metrologia 35 119

    [19]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [20]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [21]

    Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673

    [22]

    Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045

    [23]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [27]

    Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250

    [28]

    Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409

    [29]

    Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163

    [30]

    Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504

    [31]

    Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251

    [32]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [33]

    Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433

    [34]

    Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697

    [35]

    Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [4] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [5] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [6] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [7] Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries. Acta Physica Sinica, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [8] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [10] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [14] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [19] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [20] Sun Bo, Liu Shao-Jun, Zhu Wen-Jun. The division of iron's core and valence states under high pressures via first-principles calculation. Acta Physica Sinica, 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
Metrics
  • Abstract views:  5966
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2017
  • Accepted Date:  07 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map