Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Force analysis and pressure quantitative measurement for the high pressure cubic cell

Wang Hai-Kuo Ren Ying He Duan-Wei Xu Chao

Citation:

Force analysis and pressure quantitative measurement for the high pressure cubic cell

Wang Hai-Kuo, Ren Ying, He Duan-Wei, Xu Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large volume cubic press is one of the most popular high pressure devices which can produce pressures up to about 7 GPa. It is well known experimentally that the enhancing of the maximum pressure generated in the large volume cubic press has attracted wide attention among scientists and engineers because the higher pressure is capable of synthesizing some materials with interesting properties. In the large volume cubic press, pyrophyllite is typically used as a pressure-transmitting medium. A specimen immersed in such a solid experiences a generalized stress state. The pressure distribution in pyrophyllite is an important parameter for characterizing the sample environment and designing the experiments at high pressure. There is a need for the quantitative measurement of pressure gradients in the pyrophyllite pressure medium, so that the accurate experimental data under high pressure can be obtained. In the large volume cubic apparatus (68 MN), we put a circuit into the high pressure cubic cell, so that the pressures at various positions can be measured by using the phase transitions in Bi, Tl and Ba. In the present work, the relationship between the total press load and the press load allocated to the anvil face, and the relationship between the total press load and the press load allocated to gaskets are established at room temperature. The results show that with the increase of the total press load, the load allocated to the gaskets is increased sharply, while the curve of load allocated to the anvil face versus total press load reaches a plateau, which results in the cell pressure reaching upper limit when the cell pressure reaches up to about 5 GPa. According to the experimental results, the stress state of the cubic cell under high pressure is analyzed and the reason why the pressure generated in the large volume cubic chamber is difficult to exceed 7 GPa is explained. Based on the geometrical structure of the cubic cell, the scheme to increase the upper pressure limit for cubic cell by using the material with high bulk modulus as the pressure transmitting medium and the material with low bulk modulus as the gasket, is proposed. Additionally, the method of calculating the pressure values at different positions along the axis of symmetry in the cubic cell is given through the quantitative calibration of the pressure gradient in the axial direction of the cubic cell. This method can provide more accurate pressure data for high pressure experiments.
      Corresponding author: Wang Hai-Kuo, haikuo_wang@haut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation for the Youth Scholars of China (Grant Nos. 11504087, 51502217), the Natural Science Foundation for Education Department of Henan, China (Grant No. 14A430033), and the Fundamental Research Fund for Henan University of Technology, China (Grant No. 2014CXRC08).
    [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]

    [9]

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]

    [10]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [11]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [12]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [13]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [14]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [15]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [16]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [17]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [18]

    Sung C M 1997 High Temp. High Press. 29 253

    [19]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]

    [20]

    Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]

    [21]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [22]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [23]

    Khvostantsev L G 1984 High Temp. High Press. 16 165

    [24]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101

    [25]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [26]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [27]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367

    [28]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [29]

    Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943

    [30]

    Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885

  • [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]

    [9]

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]

    [10]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [11]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [12]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [13]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [14]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [15]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [16]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [17]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [18]

    Sung C M 1997 High Temp. High Press. 29 253

    [19]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]

    [20]

    Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]

    [21]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [22]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [23]

    Khvostantsev L G 1984 High Temp. High Press. 16 165

    [24]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101

    [25]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [26]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [27]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367

    [28]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [29]

    Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943

    [30]

    Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885

  • [1] Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei. Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device. Acta Physica Sinica, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] He Xiao, Xiao Xiao-Zhou, He Bin, Xue Ping, Xiao Jia-Ying. Quantitative analysis of oxygen partial pressure measurements based on photoacoustic pump-probe imaging. Acta Physica Sinica, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [3] Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical. Acta Physica Sinica, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [4] Dai Yi, Wang Wen-Dan, Fa Zhi-Xiang, Wang Lu, Wang Ju, Liang Ce, Li Xing-Han. Maximum multianvil cell assembly running on WC anvils with certain size. Acta Physica Sinica, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [5] Zhang He-Lu, Qin Min, Fang Wu, Tang Ke, Duan Jun, Meng Fan-Hao, Shao Dou, Hua Hui, Liao Zhi-Tang, Xie Pin-Hua. Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy. Acta Physica Sinica, 2021, 70(15): 150702. doi: 10.7498/aps.70.20210312
    [6] Zhang Bu-Qiang, Xu Zhen-Yu, Liu Jian-Guo, Yao Lu, Ruan Jun, Hu Jia-Yi, Xia Hui-Hui, Nie Wei, Yuan Feng, Kan Rui-Feng. Temperature measurement method of high temperature and high pressure flow field based on wavelength modulation spectroscopy technology. Acta Physica Sinica, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] Zhang Yun-Gang, Liu Ru-Hui, Wang Mei-Ting, Wang Yun-Xuan, Li Zhan-Xun, Tong Kai. Theoretical and experimental study of average reflection optical path length of diffuse cubic cavity. Acta Physica Sinica, 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [8] Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO. Acta Physica Sinica, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [9] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [10] Tan Wei, Fu Xiao-Fang, Li Zhi-Xin, Zhao Gang, Yan Xiao-Juan, Ma Wei-Guang, Dong Lei, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom. Acta Physica Sinica, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [11] Wang Hai-Kuo, He Duan-Wei, Xu Chao, Liu Fang-Ming, Deng Ji-Rui, He Fei, Wang Yong-Kun, Kou Zi-Li. Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil. Acta Physica Sinica, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [12] Dong Mei-Li, Zhao Wei-Xiong, Cheng Yue, Hu Chang-Jin, Gu Xue-Jun, Zhang Wei-Jun. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement. Acta Physica Sinica, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [13] Guan Jun-Wei, He Duan-Wei, Wang Hai-Kuo, Peng Fang, Xu Chao, Wang Wen-Dan, Wang Kai-Xue, He Kai. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell. Acta Physica Sinica, 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [14] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [15] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Li Yong-Sheng, Jiang Xiao-Hua, Ding Yong-Kun. Direct measurement technique for shock wave velocity under super high pressure. Acta Physica Sinica, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [16] Xiang Shao-Hua, Song Ke-Hui. Transfer of quantum information via cavity QED technique. Acta Physica Sinica, 2005, 54(3): 1190-1193. doi: 10.7498/aps.54.1190
    [17] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [18] YANG JIA-MIN, DING YAO-NAN, YI RONG-QING, WANG YAO-MEI, ZHANG WEN-HAI, ZHENG ZHI-JIAN. QUANTITATIVE MEASUREMENT OF SOFT-X-RAY SPECTRUM USING TRANSMISSION GRATING SPECTROMETER. Acta Physica Sinica, 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [19] HU JING-ZHU, TANG RU-MING, XU JI-AN. THE HIGH PRESSURE DEVICE OF DIAMOND ANVIL AND THE OBSERVATION OF PHASE TRANSITION OF IODINE AND SULPHUR. Acta Physica Sinica, 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [20] . Acta Physica Sinica, 1975, 24(4): 301-306. doi: 10.7498/aps.24.301
Metrics
  • Abstract views:  6720
  • PDF Downloads:  321
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2016
  • Accepted Date:  04 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map