-
本文基于新型单波长外腔共振和频技术实现了转换效率高、波长可调谐589 nm激光的输出, 其中基频光波长分别为1583 nm和938 nm, 和频晶体为周期极化铌酸锂. 在1583 nm激光频率被锁定到外部环形腔腔模后, 通过对938 nm激光的频率扫描实现了输出功率4.96 mW, 调谐范围7 GHz的589 nm激光输出, 并采用声光调制器的伺服反馈技术有效提高了输出功率的稳定性. 最后采用该光源对钠原子在348—413 K (75—140 ℃)时D2线的饱和荧光谱进行了测量. 观察到了多普勒背景下钠D2a, D2b以及Crossover的亚多普勒结构, 其均可为589 nm频率的锁定提供参考信号.A wavelength-tunable laser output at 589 nm with high conversion efficiency based on sum-frequency generation by using the technique of single-wavelength extra-cavity resonance is achieved. The two fundamental wavelengths are 1583 nm and 938 nm and the nonlinear crystal is the period-poled lithium niobate. After the frequency of 1583 nm laser was locked to the cavity mode and the frequency of 938 nm laser was scanned, a 589 nm laser output with power of 4.96 mW and wavelength tuning range of 7 GHz was obtained and the stability of the output power is improved effectively with the help of servo feedback loop technique of acousto-optic-modulator. Finally, based on this laser, the saturated fluorescence spectrum of sodium D2 line in the temperature range of 348—413 K (75—140 ℃) were measured. The Doppler-free structures of D2a, D2b and crossover lines on Doppler background were observed, which can provide reference signals for the frequency locking of 589nm laser.
-
Keywords:
- single-wavelength extra-cavity resonance /
- sum-frequency /
- 589 nm /
- sodium atom saturated fluorescence spectrum
[1] Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684
[2] Mimoun E, Sarlo L D, Zondy J-J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31
[3] Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219
[4] Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D Spinhirne J M 2004 Proc. of SPIE 5490 1010
[5] Yan Z A, Hu X, Guo S Y, Cheng Y Q 2009 Proc. of SPIE 7382 738232
[6] R Q Fugate 1991 Nature 353 144
[7] Geng A C, Bo Y, Bi Y, Sun Z P, Yang X D, Lu Y F, Chen Y H, Guo L, Wang G L, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 5227 (in Chinese) [耿爱丛, 薄勇, 毕勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭林, 王桂玲, 崔大复, 许祖彦 2006 55 5227]
[8] Moosmuller H, Vance J D 1997 Opt. Lett. 22 1135
[9] Xie S, Bo Y, Xu J, Shen Y, Wang P, Wang Z, Yang F, Peng Q, Cui D Zhang J Xu Z 2011 Appl. Phys. B 102 781
[10] Zhang L, Lu Y H, Liu D, Tang C, Wang W M, Gao S X 2011 High Power Laser and Particle Beams 23 1501 (in Chinese) [张雷, 鲁燕华, 刘东, 唐淳, 王卫民, 高松信 2011 强激光与粒子数 23 1501]
[11] Taylor L Feng Y, Calia D B 2010 Opt. Express 18 8540
[12] Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021
[13] Yan X J, Li Z X, Zhang Y Z, Wang L, Hu Z Y, Ma W G, Zhang L, Yin W B, Jia S T 2011 Acta Phys. Sin. 60 104210 (in Chinese) [闫晓娟, 李志新, 张永智, 王乐, 胡志裕, 尹王保, 贾锁堂 2011 60 104210]
[14] Giordmine J 1962 Phys. Rev. Lett. 8 19
[15] Maker P D, Terhune R W, Nisenoff C M, Savage C 1962 Phys. Rev. Lett. 8 21
[16] Boyd G D, Kleinman D A 1968 Appl. Phys. 39 3597
[17] Yan X J, Li Z X, Zhang Y Z, Tan W, Fu X F, Ma W G, Zhang L, Yin W B, Jia S T 2012 Acta Sinica Quantum Optica 18 197 (in Chinese) [闫晓娟, 李志新, 张永智, 谭巍, 付小芳, 马维光, 张雷, 尹王保, 贾锁堂 2012 量子光学学报 18 197]
[18] Kaneda Y, Kubota S 1997 Appl. Opt. 36 7766
[19] Sugiyama K, Kawajiri S, Yabu N, Matsumoto S, Kitano M 2010 Appl. Opt. 49 5510
[20] Kim D-I, Rhee H G, Song J B, Lee Y W 2007 Rev. Sci. Instrum 78 103110
[21] Foltynowicz A, Ma W G, Schmidt F M, Axner O 2008 J. Opt. Soc. Am. B 25 1156
[22] Goldberg L, Burns W K McElhanon R W 1995 Opt. Lett. 20 1280
-
[1] Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684
[2] Mimoun E, Sarlo L D, Zondy J-J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31
[3] Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219
[4] Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D Spinhirne J M 2004 Proc. of SPIE 5490 1010
[5] Yan Z A, Hu X, Guo S Y, Cheng Y Q 2009 Proc. of SPIE 7382 738232
[6] R Q Fugate 1991 Nature 353 144
[7] Geng A C, Bo Y, Bi Y, Sun Z P, Yang X D, Lu Y F, Chen Y H, Guo L, Wang G L, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 5227 (in Chinese) [耿爱丛, 薄勇, 毕勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭林, 王桂玲, 崔大复, 许祖彦 2006 55 5227]
[8] Moosmuller H, Vance J D 1997 Opt. Lett. 22 1135
[9] Xie S, Bo Y, Xu J, Shen Y, Wang P, Wang Z, Yang F, Peng Q, Cui D Zhang J Xu Z 2011 Appl. Phys. B 102 781
[10] Zhang L, Lu Y H, Liu D, Tang C, Wang W M, Gao S X 2011 High Power Laser and Particle Beams 23 1501 (in Chinese) [张雷, 鲁燕华, 刘东, 唐淳, 王卫民, 高松信 2011 强激光与粒子数 23 1501]
[11] Taylor L Feng Y, Calia D B 2010 Opt. Express 18 8540
[12] Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021
[13] Yan X J, Li Z X, Zhang Y Z, Wang L, Hu Z Y, Ma W G, Zhang L, Yin W B, Jia S T 2011 Acta Phys. Sin. 60 104210 (in Chinese) [闫晓娟, 李志新, 张永智, 王乐, 胡志裕, 尹王保, 贾锁堂 2011 60 104210]
[14] Giordmine J 1962 Phys. Rev. Lett. 8 19
[15] Maker P D, Terhune R W, Nisenoff C M, Savage C 1962 Phys. Rev. Lett. 8 21
[16] Boyd G D, Kleinman D A 1968 Appl. Phys. 39 3597
[17] Yan X J, Li Z X, Zhang Y Z, Tan W, Fu X F, Ma W G, Zhang L, Yin W B, Jia S T 2012 Acta Sinica Quantum Optica 18 197 (in Chinese) [闫晓娟, 李志新, 张永智, 谭巍, 付小芳, 马维光, 张雷, 尹王保, 贾锁堂 2012 量子光学学报 18 197]
[18] Kaneda Y, Kubota S 1997 Appl. Opt. 36 7766
[19] Sugiyama K, Kawajiri S, Yabu N, Matsumoto S, Kitano M 2010 Appl. Opt. 49 5510
[20] Kim D-I, Rhee H G, Song J B, Lee Y W 2007 Rev. Sci. Instrum 78 103110
[21] Foltynowicz A, Ma W G, Schmidt F M, Axner O 2008 J. Opt. Soc. Am. B 25 1156
[22] Goldberg L, Burns W K McElhanon R W 1995 Opt. Lett. 20 1280
计量
- 文章访问数: 6228
- PDF下载量: 623
- 被引次数: 0