-
针对大腔体静高压装置中的多级八面体压腔,分析了两种不同加载结构的力的传递, 建立了高压发生效率的力学关系.室温下,采用定点标压法(Bi, ZnTe, ZnS, GaAs)分别标定了14/8, 12/6和10/4三种二级6-8型大腔体静高压组装的腔体压力, 定量地讨论了力学结构和末级压砧硬度对八面体压腔高压发生效率的影响. 实验结果表明,力学结构和末级压砧硬度都是影响高压发生效率的重要因素, 且力学结构对高压发生效率的影响更大.其中,腔体的几何结构越大,高压发生效率越高; 6-8型加载结构的高压发生效率高于2-6-8型加载结构;在八面体压腔内的压力接近末级压砧的维氏硬度时, 末级压砧硬度越大,高压发生效率越高,所能获得的腔体压力越大.We analyse the loading force transmissions for two kinds of loading structures directed at multistage octahedral cell of high pressure device, and build a mechanical relationship for high pressure producing efficiency. The relationship between cell pressure and hydraulic load is calibrated at room temperature for 14/8, 12/6 and 10/4 cell assemblies using the phase transitions of Bi, ZnTe, ZnS and GaAs under high pressure. Also we discuss qualitatively the influences of both mechanical configuration and hardness of last stage anvil on high pressure producing efficiency of octahedral cell. The experimental results show that both mechanical configuration and hardness of last stage anvil are key factors for affecting high pressure producing efficiency, what is more, the mechanical configuration is more important. The larger the geometry configuration of octahedral cell, the higher the high pressure producing efficiency is; high pressure producing efficiency of 6-8 type loading configuration is higher than that of 2-6-8 type loading configuration; when the pressure of octahedral cell approaches to Vickers hardness of last stage anvil, the harder the last stage anvil, the higher the high pressure producing efficiency and the higher cell pressure is.
[1] Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075
[2] Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526
[3] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[4] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283
[5] Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005
[6] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735
[7] Sung C M 1997 High Temp.-High Pressure 29 253
[8] Khvostantsev L G 1984 High Temp.-High Pressure 16 165
[9] Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Amsterdam: Elsevier B. V.) p461
[10] Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19
[11] Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245
[12] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190
[13] Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497
[14] Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002
[15] Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497
[16] Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916
[17] Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A,Rubie D C 2004 Phys. Earth Planet. Int. 143-144 507
[18] Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178
[19] Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38
[20] Lü S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]
[21] Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237
[22] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190
[23] He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL 2007 1 0048839.2) 13 May 2009 [贺端威, 王福龙, 寇自力, 彭放 中国专利(专利号: ZL 2007 1 0048839.2) 13 May 2009]
[24] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]
[25] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]
[26] Getting I C 1998 Metrologia 35 119
[27] Lloyd E C 1971 NBS Special Publication 326 201
[28] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435
[29] Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333
[30] Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608
[31] Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350
-
[1] Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075
[2] Singh A K, Liermann H P, Akahama Y, Saxena S K, Menéndez-Proupin E 2007 J. Appl. Phys. 101 123526
[3] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[4] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283
[5] Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005
[6] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735
[7] Sung C M 1997 High Temp.-High Pressure 29 253
[8] Khvostantsev L G 1984 High Temp.-High Pressure 16 165
[9] Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Amsterdam: Elsevier B. V.) p461
[10] Liebermann R C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19
[11] Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245
[12] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190
[13] Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497
[14] Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002
[15] Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497
[16] Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916
[17] Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A,Rubie D C 2004 Phys. Earth Planet. Int. 143-144 507
[18] Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178
[19] Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38
[20] Lü S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]
[21] Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237
[22] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190
[23] He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL 2007 1 0048839.2) 13 May 2009 [贺端威, 王福龙, 寇自力, 彭放 中国专利(专利号: ZL 2007 1 0048839.2) 13 May 2009]
[24] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]
[25] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]
[26] Getting I C 1998 Metrologia 35 119
[27] Lloyd E C 1971 NBS Special Publication 326 201
[28] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435
[29] Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333
[30] Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608
[31] Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350
计量
- 文章访问数: 7298
- PDF下载量: 835
- 被引次数: 0