搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

八面腔压机中一定尺寸的二级压砧上运行的最大组装

戴逸 王文丹 法志湘 王路 王菊 梁策 李星翰

引用本文:
Citation:

八面腔压机中一定尺寸的二级压砧上运行的最大组装

戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰

Maximum multianvil cell assembly running on WC anvils with certain size

Dai Yi, Wang Wen-Dan, Fa Zhi-Xiang, Wang Lu, Wang Ju, Liang Ce, Li Xing-Han
PDF
HTML
导出引用
  • 自八面腔静高压装置问世以来, 一定尺寸的二级压砧上可获得的最大腔体体积一直是一个被忽略的问题. 本工作通过八面体压腔的密封简化模型, 计算出加载后密封边可流动空间的最大体积, 进而确定出一定尺寸的二级压砧上可运行的最大腔体组装, 并以边长为25.4 mm的二级压砧为例, 计算了不同八面体边长与立方块截角边长的组合(八面体传压介质边长/二级压砧截角边长为18/11和25/17组装), 不同八面体初始形状(八面体倒棱与否)加载后的密封边可流动空间的最大体积, 并根据计算结果选定预密封条尺寸. 在边长为25.4 mm的碳化钨立方块上, 以叶腊石八面体为传压介质, 对18/11和25/17组装进行压力标定实验. 实验结果表明本工作中关于密封边体积的计算结果成立, 同时在25.4 mm的碳化钨二级压砧上实现了25/17组装的稳定运行, 获得接近厘米级的样品腔尺寸.
    Since the invention of split sphere multianvil apparatus, the maximum sample size that can be obtained on tungsten carbide (WC) anvils with a certain size has always been a neglected issue. The maximum volume of loaded gaskets and the maximum multianvil cell assembly operating on given size WC anvils are calculated by a simplified geometric model. As a concrete example, the maximum volume of loaded gaskets in different assemblies (18/11, 25/17 (octahedral edge-length/anvil truncation edge-length, in millimetre)) and different initial shapes of octahedrons (octahedron chamfered or not) running on WC anvils with 25.4 mm edge-length are calculated. The maximum initial sizes of gaskets in different assemblies are also calculated according to the maximum volume of loaded gaskets. Using the pyrophyllite octahedron as the pressure transmission medium, the pressure calibration of 14/8, 18/11, and 25/17 assembly are carried out on WC cubes, of which the edge-length is 25.4 mm, to verify the calculated results. The cell pressure is calibrated by in situ observing resistance change caused by phase transition of pressure calibration material at high pressure. All assemblies run stably and no blow-out phenomenon occurs. The experimental results show that the pressure transfer efficiency of 18/11 and 25/17 assembly with chamfered octahedron are better than previous reported results in the same pressure range. The experimental results also indicate that the calculations of the gasket in this work are valid. And the 25/17 assembly with chamfered octahedron can run stably on WC cube with 25.4 mm edge-length. In addition, using graphite tubes as heater, heating structure designs of different assemblies (14/8, 18/11, 25/17) are completed, in which the 14/8 assembly can achieve the highest temperature of 2300 ℃. The diameter of sample chamber is almost one centimeter in 25/17 assembly. This work contributes to the development of assembly techniques for secondary anvil made of polycrystalline diamond materials to obtain larger sample volumes under higher pressure conditions.
      通信作者: 王文丹, wendan.wang@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 51402245, 11902276)和冲击波物理与爆轰物理国防科技重点实验室基金(批准号: JCKYS2019212007)资助的课题
      Corresponding author: Wang Wen-Dan, wendan.wang@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402245, 11902276) and the National Key Laboratory for Shock Wave and Detonation Physics of China (Grant No. JCKYS2019212007)
    [1]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178Google Scholar

    [2]

    Ohtani E, Irifune T, Hibberson W O, Ringwood A E 1987 High Temperature High Pressure 19 523

    [3]

    Irifune T, Adachi Y, Fujino K, Ohtani E, Yoneda A, Sawamoto H 1992 High Pressure Res. 67 43

    [4]

    Walker D, Carpenter M A, Hrrch C M 1990 Amer. Miner. 75 1020

    [5]

    Shang Y S, Sheng F R, Hou X Y, Cheng L Y, Hu K 2020 Chin. Phys. Lett. 37 30

    [6]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [7]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [8]

    Ohtani E, Kagawa N, shimomura O, Togaya M, Suito K, Onodera A, Sawamoto H, Ito E, Kikegawa T 1989 Rev. Sci. Instrum. 60 922Google Scholar

    [9]

    Yamazaki D, Ito EYoshino T, Tsujino N, Yoneda A, Guo X, Xu F, Higo Y, Funakoshi K 2014 Phys. Earth Planet. Int. 228 262Google Scholar

    [10]

    Irifune T, Kunimoto T, Shinmei T 2019 C. R. Geosci. 351 260Google Scholar

    [11]

    Frost D J, Poe B T, Trnnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth Planet. Int. 143 507

    [12]

    Shatskiy A, Katsura T, Litasov K D, Shcherbakova A V, Ito E 2011 Phys. Earth Planet. Int. 189 92Google Scholar

    [13]

    Shatskiy A, Borzdov Y M, Litasov K D, Ohtani E, Khokhryakov A F 2011 Am. Mineral. 96 541Google Scholar

    [14]

    何飞, 贺端威, 马迎功, 晏小智, 刘方明, 彭放 2015 高压 3 161Google Scholar

    He F, He D W, Ma Y G, Yan X Z, Liu F M, Peng F 2015 Chin. J. High Pressure Phys. 3 161Google Scholar

    [15]

    马迎功, 贺端威, 韩晶晶, 王强, 刘进, 王永华, 刘方明, 丁未, 寇自力 2017 高压 1 61Google Scholar

    Ma Y G, He D W, Han J J, Wang Q, Liu J, Wang Y H, Liu F M, Ding W, Kou Z L 2017 Chin J High Pressure Phys. 1 61Google Scholar

    [16]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压 5 511Google Scholar

    Wang Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 5 511Google Scholar

    [17]

    Pawley A R, Clark S M, Chinnery N J 2002 Amer. Miner. 87 1172Google Scholar

    [18]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Pressure Res. 27 367Google Scholar

    [19]

    Stoyanov E, Ussermann U, Leinenweber K 2010 High Pressure Res. 30 175Google Scholar

    [20]

    吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852Google Scholar

    Lv S J, Luo J T, Su L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852Google Scholar

    [21]

    吕世杰 2007 博士学位论文 (成都: 西南交通大学)

    Lü S J 2007 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [22]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216Google Scholar

    [23]

    Getting I C 1998 Metrologia. 35 119Google Scholar

    [24]

    Chattopadhyay T, Schnering H G V, Grosshans W A 1986 Phys. B+C. 139 356

    [25]

    Ovsyannikov S V, Shchennikov V V, Popova S V 2010 Phys. Status Solidi. 235 521

    [26]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333Google Scholar

  • 图 1  加载前后八面腔压机密封边的形态示意图 (a) 加载前的预密封条; (b)加载后预密封条受挤压流动形成的密封边区域

    Fig. 1.  Schematic diagram of the gaskets before and after loading: (a) The gaskets before loading; (b) the flowing area of gaskets after loading.

    图 2  压力标定的电路连接示意图[7]

    Fig. 2.  Schematic diagram of circuit connection for pressure calibration[7].

    图 3  磨倒棱(左)和未磨倒棱的八面体(右)

    Fig. 3.  Chamfered (left) and unchamfered octahedron (right).

    图 4  加热组装示意图 (a) 18/11组装; (b) 25/17组装

    Fig. 4.  Schematic diagram of heating assemblies: (a) 18/11 assembly; (b) 25/17 assembly.

    图 5  实验使用的部分标压物质 (a) PbSe和(b) Bi的电阻随荷载变化的曲线

    Fig. 5.  Representative recorded resistances of (a) PbSe and (b) Bi respectively, as a function of press load.

    图 6  不同组装腔体的压力标定结果, 插图为碳化钨二级压砧和叶腊石预密封条都相同的条件下, 14/8组装分别以叶腊石和氧化镁为八面体传压介质的压力标定结果

    Fig. 6.  Pressure calibration of different assemblies. Insert is the pressure calibration of 14/8 assembly with different octahedron of pyrophyllite and semi-sintered magnesia.

    图 7  三种加热组装的腔体温度与功率的关系曲线. 14/8, 18/11, 25/17加热组装进行加温测试的腔体压力分别约为10, 7.7, 5.2 GPa.

    Fig. 7.  Temperature calibration of 14/8, 18/11 and 25/17 assemblies. The cell pressures for heating test were approximate 10, 7.7, and 5.2 GPa respectively.

    图 8  加载后三种组装的密封边流动区域 (a) 18/11组装八面体磨倒棱; (b) 18/11组装八面体未磨倒棱; (c) 25/17组装八面体磨倒棱

    Fig. 8.  The areas of loaded gaskets in different assembly: (a) 18/11 assembly with chamfered octahedron; (b) 18/11 assembly with unchamfered octahedron; (c) 25/17 assembly with chamfered octahedron.

    表 1  各符号及其含义

    Table 1.  Symbols and the meaning of the symbols.

    符号符号的含义
    a八面体初始边长
    b碳化钨立方块截角边长
    l立方块二级压砧的边长
    Rmax一个密封平面上密封边形成的圆形区域的最大半径, ${R_{\max }} = l + t/2$
    S1加载结束后八面腔内剩余的八面体传压介质在一个密封平面上的投影面积, ${S_1} = {b^2} + {t^2} + 2\sqrt 2 bt$
    S2部分八面体传压介质流入一个密封平面内形成的区域, $ {S}_{2}t=\Delta V/3=(0.9{V}_{0}-{V}_{\text{八面体}})/3$
    S3一个密封平面内预先放置的叶腊石预密封条受挤压形成的区域, ${S_3} = {\text{π}}{R^2} - {S_1} - {S_2}$
    t0叶腊石预密封条的初始厚度, ${t_0} = \sqrt 2 (a - b)/3$[12]
    t加载结束后密封边的厚度
    V0八面体传压介质的初始体积, ${V_0} = \sqrt 2 {a^3}/3$
    V八面体加载结束后八面腔内剩余的八面体传压介质的体积, $ {V}_{\text{八面体}}=\sqrt{2}{b}^{3}/3+3{b}^{2}t+3\sqrt{2}b{t}^{2}+{t}^{3}$[12]
    ΔV加载结束后流入相互垂直的3个密封平面内的部分八面体传压介质的总体积, $ \Delta V=0.9{V}_{0}-{V}_{\text{八面体}}$
    V叶腊石密封边一个密封平面上叶腊石预密封条形成的密封边的体积, $ {V}_{\text{叶腊石密封边}}={S}_{3}t=({\text{π}}{R}^{2}-{S}_{1}-{S}_{2})\times t$
    Vmax叶腊石密封边一个密封平面上叶腊石预密封条形成的密封边的最大体积, $ {V}_{\mathrm{max}}{}_{\text{叶腊石密封边}}=[{\text{π}}{(l+t/2)}^{2}-{S}_{1}-{S}_{2}]\times t$
    V预密封条一个预密封条的体积, $ {V}_{\text{预密封条}}={S}_{\text{梯形}}\times {t}_{0}=(a+w)w\times {t}_{0}$
    Vmax预密封条一个密封平面上叶腊石预密封条的最大体积, $ {V}_{\mathrm{max}{\text{预密封条}}}=4{V}_{\text{预密封条}}=4(a+w)w\times {t}_{0}={V}_{{\max}{\text{叶腊石密封边}}}/0.9$
    w预密封条宽度
    wmax预密封条的最大宽度
    下载: 导出CSV

    表 2  几种组装的初始参数

    Table 2.  Initial parameters of the assembly used in this work.

    组装类型预留密封条
    厚度t0/mm
    八面体初始
    边长a/mm
    八面体初
    V0/mm3
    二级压砧截角
    边长b/mm
    八面体倒棱
    宽度/mm
    二级压砧
    边长l/mm
    18/11磨倒棱3.315.661900.6113.325.4
    18/11未磨倒棱3.3182748.811025.4
    25/17磨倒棱3.822.315464.6173.825.4
    25/17未磨倒棱3.8257364.617025.4
    注: 表中预密封条初始厚度t0的具体计算方法可参考文献[12]; 倒棱八面体见图3, 倒棱八面体的初始体积V0通过构建数学几何模型计算得出.
    下载: 导出CSV

    表 3  各种组装加载后的密封边厚度t与预密封条最大宽度wmax的对应关系

    Table 3.  The calculated maximum width wmax of the gaskets before loading, corresponding to the thickness t of loaded gaskets in different assemblies.

    组装类型加载后密封边
    的厚度t/mm
    对应的预密封条
    最大宽度wmax/mm
    18/11磨倒棱 1.4 8.03
    1.6 9.05
    1.8 10.03
    18/11未磨倒棱 1.4 6.86
    1.6 7.89
    1.8 8.87
    25/17磨倒棱 1.8 6.37
    2.0 7.19
    2.2 7.98
    25/17未磨倒棱 1.8 4.74
    2.0 5.57
    2.2 6.38
    下载: 导出CSV
    Baidu
  • [1]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178Google Scholar

    [2]

    Ohtani E, Irifune T, Hibberson W O, Ringwood A E 1987 High Temperature High Pressure 19 523

    [3]

    Irifune T, Adachi Y, Fujino K, Ohtani E, Yoneda A, Sawamoto H 1992 High Pressure Res. 67 43

    [4]

    Walker D, Carpenter M A, Hrrch C M 1990 Amer. Miner. 75 1020

    [5]

    Shang Y S, Sheng F R, Hou X Y, Cheng L Y, Hu K 2020 Chin. Phys. Lett. 37 30

    [6]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [7]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [8]

    Ohtani E, Kagawa N, shimomura O, Togaya M, Suito K, Onodera A, Sawamoto H, Ito E, Kikegawa T 1989 Rev. Sci. Instrum. 60 922Google Scholar

    [9]

    Yamazaki D, Ito EYoshino T, Tsujino N, Yoneda A, Guo X, Xu F, Higo Y, Funakoshi K 2014 Phys. Earth Planet. Int. 228 262Google Scholar

    [10]

    Irifune T, Kunimoto T, Shinmei T 2019 C. R. Geosci. 351 260Google Scholar

    [11]

    Frost D J, Poe B T, Trnnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth Planet. Int. 143 507

    [12]

    Shatskiy A, Katsura T, Litasov K D, Shcherbakova A V, Ito E 2011 Phys. Earth Planet. Int. 189 92Google Scholar

    [13]

    Shatskiy A, Borzdov Y M, Litasov K D, Ohtani E, Khokhryakov A F 2011 Am. Mineral. 96 541Google Scholar

    [14]

    何飞, 贺端威, 马迎功, 晏小智, 刘方明, 彭放 2015 高压 3 161Google Scholar

    He F, He D W, Ma Y G, Yan X Z, Liu F M, Peng F 2015 Chin. J. High Pressure Phys. 3 161Google Scholar

    [15]

    马迎功, 贺端威, 韩晶晶, 王强, 刘进, 王永华, 刘方明, 丁未, 寇自力 2017 高压 1 61Google Scholar

    Ma Y G, He D W, Han J J, Wang Q, Liu J, Wang Y H, Liu F M, Ding W, Kou Z L 2017 Chin J High Pressure Phys. 1 61Google Scholar

    [16]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压 5 511Google Scholar

    Wang Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 5 511Google Scholar

    [17]

    Pawley A R, Clark S M, Chinnery N J 2002 Amer. Miner. 87 1172Google Scholar

    [18]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Pressure Res. 27 367Google Scholar

    [19]

    Stoyanov E, Ussermann U, Leinenweber K 2010 High Pressure Res. 30 175Google Scholar

    [20]

    吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852Google Scholar

    Lv S J, Luo J T, Su L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852Google Scholar

    [21]

    吕世杰 2007 博士学位论文 (成都: 西南交通大学)

    Lü S J 2007 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [22]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216Google Scholar

    [23]

    Getting I C 1998 Metrologia. 35 119Google Scholar

    [24]

    Chattopadhyay T, Schnering H G V, Grosshans W A 1986 Phys. B+C. 139 356

    [25]

    Ovsyannikov S V, Shchennikov V V, Popova S V 2010 Phys. Status Solidi. 235 521

    [26]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333Google Scholar

  • [1] 裴柏杨, 庄革, 谢锦林, 周乙楠. EAST装置上电子回旋辐射成像诊断系统的绝对标定方法.  , 2024, 73(13): 135202. doi: 10.7498/aps.73.20240497
    [2] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究.  , 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [3] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器.  , 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [4] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数.  , 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [5] 唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明. 一种以压力一维均匀分布为特征的长条形对顶压砧.  , 2016, 65(10): 100701. doi: 10.7498/aps.65.100701
    [6] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [7] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa.  , 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [8] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响.  , 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [9] 张立超, 侯蓝田, 周桂耀. 八边形光子晶体光纤色散补偿特性分析.  , 2011, 60(5): 054217. doi: 10.7498/aps.60.054217
    [10] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计.  , 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [11] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤.  , 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [12] 吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明. 滑块式六含八超高压实验装置及其压力温度标定.  , 2009, 58(10): 6852-6857. doi: 10.7498/aps.58.6852
    [13] 王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张 伟, 张 剑, 寇自力, 彭 放. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置.  , 2008, 57(9): 5429-5434. doi: 10.7498/aps.57.5429
    [14] 张 丹, 苏良碧, 徐 军, 杨秋红, 张连翰, 李红军. Cr4+在八面体格位中的光谱特性研究.  , 2006, 55(6): 3193-3196. doi: 10.7498/aps.55.3193
    [15] 金庆华, 孙平川, 王敬中, 李子元, 丁大同. 用Monte-Carlo方法研究八面沸石的脱铝过程.  , 1991, 40(8): 1371-1376. doi: 10.7498/aps.40.1371
    [16] 高x值混晶Hg1-xCdxTe光吸收边的压力效应.  , 1989, 38(11): 1858-1863. doi: 10.7498/aps.38.1858
    [17] 单伟, 沈学础, 赵敏光, 朱浩荣. 半磁半导体Cd1-xMnxTe光吸收边的压力效应.  , 1986, 35(10): 1290-1298. doi: 10.7498/aps.35.1290
    [18] 查长生, 郭常新. 用高压显微光谱系统测量流体静压力对非晶态As2S3光学吸收边的影响.  , 1982, 31(11): 1564-1568. doi: 10.7498/aps.31.1564
    [19] 文振翼. 八面体晶场强场理论的U群方法.  , 1979, 28(1): 88-103. doi: 10.7498/aps.28.88
    [20] 张绍忠. 高压力下液体之比电容.  , 1934, 1(2): 1-55. doi: 10.7498/aps.1.1-1
计量
  • 文章访问数:  4915
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-02
  • 修回日期:  2021-02-16
  • 上网日期:  2021-07-13
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map