-
The new-type monolayer semiconductor material molybdenum disulfide (MoS2) is direct band gap semiconductor with a similar geometrical structure to graphene, and as it owns superior physical features such as spin/valley Hall effect, it should be more excellent than graphene from the viewpoint of device design and applications. The manipulation of the spin and valley transport in MoS2-based device has been an interesting subject in both experimental and theoretical researches. Experimentally, the photoninduced quantum spin and valley Hall effects may result in high on-off speed spin and/or valley switching based on MoS2. Theoretically, the off-resonant electromagnetic field induced Floquet effective energy should modulate effectively the electronic structure, spin/valley Hall conductance as well as the spin/valley polarization of the MoS2, through the virtual photon absorption and/or emission processes. Utilizing the low energy effective Hamilton model from the tight-binding approximation and Kubo linear response theorem, we theoretically investigate the electronic structure and spin/valley transport properties of the monolayer MoS2 under the irradiation of the off-resonant circularly polarized light in the present work. The band gaps around the K and K' point of the Brillouin region for monolayer MoS2 proves to increase linearly and decrease firstly and then increase, respectively with the increase of external off-resonant right-circularly polarized light induced effective coupling energy, and decrease firstly and then increase and increase linearly with the increase of left-circularly polarized light induced effective coupling energy, therefore, the interesting transition of semiconducting-semimetallic-semiconducting may be observable in monolayer MoS2. Furthermore, the spin and valley Hall conductance of the monolayer MoS2 for the case without off-resonant circularly polarized light are 0 and 2e2/h, respectively, and they will convert into -2e2/h and 0 when the absolute value of the off-resonant circularly polarized light induced effective coupling energy is in a range of 0.79-0.87 eV. Finally, the spin polarization for monolayer MoS2 increases up to a largest value and changes from positive to negative and/or negative to positive at the vicinity of the effective coupling energy ±0.79 eV of the off-resonant right/left circularly polarized light, while the valley polarization should increase firstly and then decrease with the off-resonant circularly polarized light, and goes up to 100% in the range of 0.79-0.87 eV of the absolute value for effective coupling energy. Therefore, the external off-resonant circularly polarized electromagnetic field should be an effective means in manipulating the electronic structure, spin/valley Hall conductance and spin/valley polarization of the monolayer MoS2, the two-dimensional MoS2 may be tuned into a brand bandgap material with excellent spin/valley and optoelectrical properties.
-
Keywords:
- MoS2 /
- off-resonant light /
- electronic structure /
- spin/valley Hall conductance
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197
[3] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315
[4] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[5] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770
[6] Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715
[7] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
[8] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[9] Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425
[10] Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413
[11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[12] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[13] Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[15] Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546
[16] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136
[17] Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802
[18] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887
[19] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494
[20] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490
[21] Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104
[22] Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403
[23] Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621
[24] Wang S, Wang J 2015 Physica B 458 22
[25] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[26] Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440
[27] Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003
[28] Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425
[29] Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108
[30] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882
[31] Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[32] Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[33] Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306
[34] Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201
[35] Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438
[36] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108
[37] Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197
[3] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315
[4] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[5] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770
[6] Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715
[7] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
[8] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[9] Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425
[10] Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413
[11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[12] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[13] Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[15] Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546
[16] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136
[17] Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802
[18] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887
[19] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494
[20] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490
[21] Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104
[22] Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403
[23] Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621
[24] Wang S, Wang J 2015 Physica B 458 22
[25] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[26] Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440
[27] Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003
[28] Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425
[29] Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108
[30] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882
[31] Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[32] Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[33] Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306
[34] Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201
[35] Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438
[36] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108
[37] Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423
Catalog
Metrics
- Abstract views: 6655
- PDF Downloads: 319
- Cited By: 0