搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用第一性原理研究钼掺杂浓度对ZnO物性的影响

贾晓芳 侯清玉 赵春旺

引用本文:
Citation:

采用第一性原理研究钼掺杂浓度对ZnO物性的影响

贾晓芳, 侯清玉, 赵春旺

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang
PDF
导出引用
  • Mo掺杂ZnO的吸收光谱红移和蓝移两种相互冲突的实验结果均有报道,但是仍然没有合理解释.为了解决该问题,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势+U方法,用第一性原理分析了Zn0.9583Mo0.0417O,Zn0.9375Mo0.0625O,Zn14Mo2O的能带结构、态密度和吸收光谱分布.结果表明,Mo掺杂量为2.08 at%3.13 at%的范围内,随着掺杂量的增加,体系的体积逐渐增大,形成能逐渐升高,稳定性逐渐下降,掺杂逐渐困难.与此同时,所有掺杂体系均转化为n型简并半导体.与未掺杂ZnO相比,掺杂体系的带隙均变窄,吸收光谱均发生红移,Mo掺杂量越增加,掺杂体系带隙变窄减弱、吸收光谱红移减弱、电子有效质量越减小、电子浓度越减小、电子迁移率越减小、电子电导率越减小.同时,磁矩减小,掺杂体系的居里温度能达到室温以上.
    The experimental results of red-shift and blue-shift in absorption spectrum of Mo-doped ZnO are in mutual contradiction, and this phenomenon has not been explained rationally so far. For explaining this phenomenon, we analyze the energy band structure, state density, and absorption-spectrum distributions for each of Zn0.9583Mo0.0417O, Zn0.9375Mo0.0625O and Zn14Mo2O by first-principles calculation. The results show that within a limited doping amount range of 2.08 at%-3.13 at%, the higher Mo doping amount results in higher doping system volume, higher formation energy, lower system stability, and more difficult to dope. Meanwhile, all doping systems are converted into n-type degenerate semiconductors. Compared with the band gap of pure ZnO, the band gap of each doping system becomes narrow and the absorption spectrum shows red-shift. The higher the Mo doping amount, the weaker the narrowing of band gap becomes and the weaker the red-shift in absorption spectrum as well as the lower the electronic effective mass and the lower the electronic concentration; the lower the electronic mobility, the lower the electronic conductivity is; the lower the electronic magnetic moment is. The Curie temperature of doping system can reach a temperature higher than room temperature.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号:61366008,61664007,11672175)资助的课题.
      Corresponding author: Huo Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究.  , 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [7] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响.  , 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [8] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [9] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [10] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [11] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [12] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [13] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [14] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [15] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [16] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [17] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [19] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [20] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究.  , 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
计量
  • 文章访问数:  7974
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2016-12-28
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map