-
Using first principles calculations within density functional theory, we investigate the electronic property of a single-layer MoS2 adsorbed on Au. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed using the projector augmented wave method with the Perdew-Burke-Ernzerhof functional and a kinetic energy cutoff of 400 eV. The atomic plane and its neighboring image are separated by a 15 Å vacuum layer. The k-meshes for the structure relaxation and post analysis are 9×9×1 and 19×19×1, respectively. The spin-orbit coupling is considered in the calculation. The research includes the binding energy, the band structure, density of states (DOS) and electric charge difference density. Three contact modes between MoS2 (0001) and Au (111) are considered. When the atom S layer and the atom Au layer on the contacting interface have the same structure, the minimum binding energy and distance between MoS2 (0001) and Au(111) are 2.2 eV and 2.5 Å respectively. The minimum binding energy confirms that the absorption is unstable. The band structure demonstrates that the MoS2-Au contact nature is of the Schottky-barrier type, and the barrier height is 0.6 eV which is bigger than MoS2-Sc contact. By comparison with other metal contacts such as Ru(0001), Pd(111) and Ir(111), the dependence of the barrier height on the work function difference exhibits a Fermi-level pinning. But the MoS2 is so thin that the Fermi-level pinning must be very small. Maybe there is a metal induced gap state. DOS points out that the Au substrate has no influence on the covalent bond between Mo and S. The influence of the Au substrate is that it shifts the DOS of monolayer MoS2 left on the axis. The change of DOS results in the increases of electron concentration and electric conductivity. Other calculation points out that Ti substrate can excite more electrons. Electric charge density difference demonstrates that there are a few electric charges that transfer on the contact interface. The conducting path of monolayer MoS2 may emerge at the interface between Au and MoS2. In summary, the Au electrode is not the best electrode in the MoS2 device. The Ti electrode can excite more electrons from MoS2. The work function of Sc electrode is close to the affine of MoS2. The Fermi energy level of graphene can be tuned by external voltage. So the Ti, Sc and graphene will be the better electrodes for MoS2 device. Results of this study may provide a theoretical basis for single-layer MoS2 transistor and guidance for its applications.
-
Keywords:
- MoS2 /
- Au substrate /
- electronic structure /
- first-principle
[1] Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960
[2] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372
[3] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[5] Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213
[7] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[8] Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
[9] Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501
[10] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[11] Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166
[12] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[13] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[14] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[15] Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635
[16] Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853
[17] Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[18] Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100
[19] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[20] Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[21] Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307
[22] Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625
[23] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[25] Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188
[26] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]
[27] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[28] Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509
[29] Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802
[30] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
-
[1] Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960
[2] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372
[3] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[5] Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213
[7] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[8] Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
[9] Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501
[10] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[11] Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166
[12] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[13] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[14] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[15] Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635
[16] Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853
[17] Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[18] Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100
[19] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[20] Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[21] Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307
[22] Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625
[23] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[25] Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188
[26] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]
[27] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[28] Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509
[29] Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802
[30] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
Catalog
Metrics
- Abstract views: 7144
- PDF Downloads: 618
- Cited By: 0