-
将单层二硫化钼用石墨烯进行封装,构造了石墨烯和二硫化钼的范德瓦耳斯异质结构,并且分别在氩气(Ar)和氢气(H2)氛围下,详细研究了被封装的二硫化钼的热稳定性.结果表明:在氩气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直保持稳定,而石墨烯和氧化硅上裸露的二硫化钼在1000℃时几乎全部分解;在氢气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直稳定存在,而石墨烯和氧化硅上裸露的二硫化钼在800℃下已经完全分解.综上可得,在氩气和氢气的氛围下,被石墨烯封装的二硫化钼的热稳定性得到了显著的提高.该研究通过用石墨烯将单层的二硫化钼进行封装以提高其热稳定性,在未来以单层二硫化钼作为基础材料的电子器件中,可以保证其在高温下能够正常工作.该研究也为提高其他二维材料的热稳定性提供了一种可行的方法和思路.Monolayer molybdenum disulfide (MoS2), a semiconductor material with direct band gap, is considered to be an important fundamental material for the future development of the semiconductor industry. In order to apply the material to semiconductor devices, we have to investigate the electrical, optical and thermal properties of MoS2. People have always been concerning about the electrical and optical properties, but pay little attention to the thermal properties of MoS2, especially thermal stability. It is well known that semiconductor device generates a lot of heat when it works, sometimes even running in high temperature environment. The above conditions all require the material which has good thermal stability. So we focus on how to improve the thermal stability of MoS2. In this paper, we report the construction of the van der Waals heterostructures of graphene and MoS2 by encapsulating monolayer MoS2 with graphene, and dissect the thermal stability of encapsulated MoS2 in argon (Ar) and hydrogen (H2) atmosphere respectively. The results show that in Ar atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, while the exposed MoS2 is decomposed almost completely at 1000 ℃. In H2 atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, but the exposed MoS2 is decomposed completely at 800 ℃. In conclusion, the thermal stability of MoS2 encapsulated by graphene can be improved significantly. We analyze the reason why MoS2 encapsulated by graphene gains good thermal stability. Firstly, the covered graphene provides additional van der Waals forces, which increases the decomposition energy of MoS2, making it more stable at high temperature environment. Secondly, graphene separates MoS2 from the external environment, preventing MoS2 from contacting and reacting with external gas, which greatly improves the thermal stability of MoS2 at high temperature environment. Meanwhile, graphene covers the active defect site on MoS2, making it difficult to react at defects. In summary, the monolayer MoS2 devices can work normally at high temperature when MoS2 is encapsulated by graphene. In addition, our work also provides a feasible approach to improving the thermal stability of other two-dimensional materials.
-
Keywords:
- molybdenum disulfide /
- thermal stability /
- Raman spectra /
- graphene
[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
[2] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091
[4] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494
[5] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[6] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543
[7] Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522
[8] Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888
[9] Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326
[10] Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970
[11] Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018
[12] Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177
[13] Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540
[14] Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244
[15] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538
[16] Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637
[17] Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632
[18] Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001
[19] Sevik C 2014 Phys. Rev. B 89 035422
[20] Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518
[21] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385
-
[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
[2] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091
[4] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494
[5] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[6] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543
[7] Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522
[8] Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888
[9] Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326
[10] Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970
[11] Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018
[12] Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177
[13] Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540
[14] Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244
[15] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538
[16] Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637
[17] Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632
[18] Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001
[19] Sevik C 2014 Phys. Rev. B 89 035422
[20] Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518
[21] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385
计量
- 文章访问数: 8539
- PDF下载量: 245
- 被引次数: 0