-
为了研究稀土掺杂对单层MoS2电子结构的影响,文章基于密度泛函理论框架下的第一性原理,采用平面波赝势方法分别计算了本征及La,Ce,Nd掺杂单层MoS2的晶格参数、能带结构、态密度和差分电荷密度. 计算发现,稀土掺杂所引起的晶格畸变与杂质原子的共价半径大小有关,La 杂质附近的键长变化最大,Nd杂质附近的键长变化最小. 能带结构分析表明,La 掺杂可以在MoS2的禁带中引入3个能级,Ce 掺杂可以形成6个新能级,Nd掺杂可以形成4 个能级,并对杂质能级属性进行了初步分析. 差分电荷密度分布显示,稀土掺杂可以使单层MoS2 中的电子分布发生改变,尤其是f电子的存在会使差分电荷密度呈现出反差极大的物理图象.To study the effect of rare earth element doping on the electronic structure of monolayer MoS2, the lattice parameters, band structures, density of states, and electron density differences of La, Ce and Nd doped and intrinsic monolayer MoS2 are calculated, respectively, using first-principles density functional theory based on the plane wave pseudopotential method in this paper. Calculations indicate that variations of bond length near La impurity are maximum, but they are the minimum near Nd impurity. Analysis points out that lattice distortion in doped monolayer of MoS2 is relative to the magnitude of the covalent radius of doping atom. Analysis of band structure shows that La, Ce and Nd doping can induce three, six and four energy levels, respectively, in the forbidden band of MoS2, and that the properties of impurity levels are analyzed. Rare earth doped monolayer MoS2 make change in electron distribution through the analysis of electron density difference, and especially, the existence of f electrons can induce the electron density difference to exhibit a physical image with a great contrast.
-
Keywords:
- first principles /
- MoS2 /
- rare earth doping /
- electronic structure
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Geim A K 2009 Science 324 1530
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538
[8] Ellis J K, Lucero M J, Scuseria G E 2011 Appl. Phys. Lett. 99 261908
[9] Kadantsev E S, Hawrylak P 2012 Sol. Stat. Commun. 152 909
[10] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111
[11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F 2010 Nano Lett. 10 1271
[12] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
[13] Zeng Z Y, Yin Z Y, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093
[14] Coleman J N, Lotya M, O’Neill A 2011 Science 331 568
[15] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
[17] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[18] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[19] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
[20] Tsai D S, Lien D H, Tsai M L, Su S H, Chen K M, Ke J J, Yu Y C, Li L J, He J H 2014 IEEE J. Select. Top. Quant. Elect. 20 3800206
[21] Myoung N, Seo K, Lee S J, Ihm G 2013 ACS Nano 7 7021
[22] Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. (in press)
[23] Dankert A, Langouche L, Mutta V K, Dash S P 2013 ACS Nano 8 476
[24] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]
[25] Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C (in press)
[26] Tiwari C, Sharma R, Sharma Y 2012 Proceedings of the 57th Dae Solid State Physics Symposium Mumbai, India, December 3–7, 2012 p852
[27] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[28] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[29] Dar A, Majid A 2013 J. Appl. Phys. 114 123703
[30] Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]
[31] Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 62 017103]
[32] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[33] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[34] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233
[36] Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Geim A K 2009 Science 324 1530
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538
[8] Ellis J K, Lucero M J, Scuseria G E 2011 Appl. Phys. Lett. 99 261908
[9] Kadantsev E S, Hawrylak P 2012 Sol. Stat. Commun. 152 909
[10] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111
[11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F 2010 Nano Lett. 10 1271
[12] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451
[13] Zeng Z Y, Yin Z Y, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093
[14] Coleman J N, Lotya M, O’Neill A 2011 Science 331 568
[15] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
[17] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[18] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[19] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
[20] Tsai D S, Lien D H, Tsai M L, Su S H, Chen K M, Ke J J, Yu Y C, Li L J, He J H 2014 IEEE J. Select. Top. Quant. Elect. 20 3800206
[21] Myoung N, Seo K, Lee S J, Ihm G 2013 ACS Nano 7 7021
[22] Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. (in press)
[23] Dankert A, Langouche L, Mutta V K, Dash S P 2013 ACS Nano 8 476
[24] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]
[25] Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C (in press)
[26] Tiwari C, Sharma R, Sharma Y 2012 Proceedings of the 57th Dae Solid State Physics Symposium Mumbai, India, December 3–7, 2012 p852
[27] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[28] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[29] Dar A, Majid A 2013 J. Appl. Phys. 114 123703
[30] Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]
[31] Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 62 017103]
[32] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[33] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[34] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233
[36] Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739
计量
- 文章访问数: 8500
- PDF下载量: 1942
- 被引次数: 0