搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La, Ce, Nd掺杂对单层MoS2电子结构的影响

雷天民 吴胜宝 张玉明 郭辉 陈德林 张志勇

引用本文:
Citation:

La, Ce, Nd掺杂对单层MoS2电子结构的影响

雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇

Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2

Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong
PDF
导出引用
  • 为了研究稀土掺杂对单层MoS2电子结构的影响,文章基于密度泛函理论框架下的第一性原理,采用平面波赝势方法分别计算了本征及La,Ce,Nd掺杂单层MoS2的晶格参数、能带结构、态密度和差分电荷密度. 计算发现,稀土掺杂所引起的晶格畸变与杂质原子的共价半径大小有关,La 杂质附近的键长变化最大,Nd杂质附近的键长变化最小. 能带结构分析表明,La 掺杂可以在MoS2的禁带中引入3个能级,Ce 掺杂可以形成6个新能级,Nd掺杂可以形成4 个能级,并对杂质能级属性进行了初步分析. 差分电荷密度分布显示,稀土掺杂可以使单层MoS2 中的电子分布发生改变,尤其是f电子的存在会使差分电荷密度呈现出反差极大的物理图象.
    To study the effect of rare earth element doping on the electronic structure of monolayer MoS2, the lattice parameters, band structures, density of states, and electron density differences of La, Ce and Nd doped and intrinsic monolayer MoS2 are calculated, respectively, using first-principles density functional theory based on the plane wave pseudopotential method in this paper. Calculations indicate that variations of bond length near La impurity are maximum, but they are the minimum near Nd impurity. Analysis points out that lattice distortion in doped monolayer of MoS2 is relative to the magnitude of the covalent radius of doping atom. Analysis of band structure shows that La, Ce and Nd doping can induce three, six and four energy levels, respectively, in the forbidden band of MoS2, and that the properties of impurity levels are analyzed. Rare earth doped monolayer MoS2 make change in electron distribution through the analysis of electron density difference, and especially, the existence of f electrons can induce the electron density difference to exhibit a physical image with a great contrast.
    • 基金项目: 国家科技重大专项(批准号:2011ZX02707)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [8]

    Ellis J K, Lucero M J, Scuseria G E 2011 Appl. Phys. Lett. 99 261908

    [9]

    Kadantsev E S, Hawrylak P 2012 Sol. Stat. Commun. 152 909

    [10]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [13]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093

    [14]

    Coleman J N, Lotya M, O’Neill A 2011 Science 331 568

    [15]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [17]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [18]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [19]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74

    [20]

    Tsai D S, Lien D H, Tsai M L, Su S H, Chen K M, Ke J J, Yu Y C, Li L J, He J H 2014 IEEE J. Select. Top. Quant. Elect. 20 3800206

    [21]

    Myoung N, Seo K, Lee S J, Ihm G 2013 ACS Nano 7 7021

    [22]

    Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. (in press)

    [23]

    Dankert A, Langouche L, Mutta V K, Dash S P 2013 ACS Nano 8 476

    [24]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]

    [25]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C (in press)

    [26]

    Tiwari C, Sharma R, Sharma Y 2012 Proceedings of the 57th Dae Solid State Physics Symposium Mumbai, India, December 3–7, 2012 p852

    [27]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]

    [28]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [29]

    Dar A, Majid A 2013 J. Appl. Phys. 114 123703

    [30]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]

    [31]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 62 017103]

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [36]

    Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [8]

    Ellis J K, Lucero M J, Scuseria G E 2011 Appl. Phys. Lett. 99 261908

    [9]

    Kadantsev E S, Hawrylak P 2012 Sol. Stat. Commun. 152 909

    [10]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [13]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093

    [14]

    Coleman J N, Lotya M, O’Neill A 2011 Science 331 568

    [15]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [17]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [18]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [19]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74

    [20]

    Tsai D S, Lien D H, Tsai M L, Su S H, Chen K M, Ke J J, Yu Y C, Li L J, He J H 2014 IEEE J. Select. Top. Quant. Elect. 20 3800206

    [21]

    Myoung N, Seo K, Lee S J, Ihm G 2013 ACS Nano 7 7021

    [22]

    Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. (in press)

    [23]

    Dankert A, Langouche L, Mutta V K, Dash S P 2013 ACS Nano 8 476

    [24]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]

    [25]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C (in press)

    [26]

    Tiwari C, Sharma R, Sharma Y 2012 Proceedings of the 57th Dae Solid State Physics Symposium Mumbai, India, December 3–7, 2012 p852

    [27]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]

    [28]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [29]

    Dar A, Majid A 2013 J. Appl. Phys. 114 123703

    [30]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]

    [31]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese) [李倩倩, 郝秋艳, 李英, 刘国栋 2013 62 017103]

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [36]

    Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [3] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [4] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [5] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质.  , 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [6] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究.  , 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [7] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [12] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究.  , 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [13] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究.  , 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  8500
  • PDF下载量:  1942
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-02
  • 修回日期:  2014-01-13
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map