-
Molybdenum disulfide (MoS2), as a layered transition metal chalcogenide, plays an important role in fields of photonics and photoelectronics. Here, a coupled system consisting of monlayer MoS2 and nano-resonator is designed and implemented. The photoluminescence (PL) spectrum of the MoS2 is coupled with the resonant mode of plasmonic bowtie resonator, thus achieving an optimal PL enhancement condition. Based on the analysis of theoretical model and experimental data, the spontaneous emission rate can be controlled by the Purcell effect, and the broadband enhanced spectrum is obtained in which its peak value increases 9.5 times and bandwidth is 100 nm . Meanwhile, the enhanced PL intensity also satisfies the cosine function relation between the polarization angle of the exciting light and that of the detecting light, which proves that the resonance mode comes from the electric field dipole in the resonator. This study provides the feasibility of studying the enhancement of light-matter interaction in an MoS2-plasmonic resonator coupled structure, which opens up a new route to improving the emission and detection efficiency of MoS2-based photonic devices in future.
-
Keywords:
- MoS2 /
- photoluminescence /
- plasmonic resonator /
- Purcell effect
[1] Wang C C, Liu X S, Wang Z Y, Zhao M, He H, Zou J Y 2018 Chin. Phys. B 27 118106
Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nature Nanotech. 7 699
Google Scholar
[3] Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C, Wu J Y 2018 Chin. Phys. B 27 056104
Google Scholar
[4] 董海明 2013 62 206101
Google Scholar
Dong H M 2013 Acta Phys. Sin. 62 206101
Google Scholar
[5] Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934
Google Scholar
[6] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nature Chem. 5 263
Google Scholar
[7] 顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 65 018102
Google Scholar
Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102
Google Scholar
[8] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802
Google Scholar
Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Chi Y 2014 Acta Phys. Sin. 63 217802
Google Scholar
[9] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[11] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497
Google Scholar
[12] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416
Google Scholar
[13] Wang K P, Wang J, Fan J T, Lotya M, O’Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260
Google Scholar
[14] Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001
Google Scholar
[15] Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A, Trusheim M, Hatami F, Heinz T, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119
Google Scholar
[16] Wu S F, Buckley S, Jones A M, Ross J S, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Hatami F, Vuckovic J, Majumdar A, Xu X D 2014 2D Mater. 1 011001
[17] Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mullen K, Moerner W E 2009 Nature Photon. 3 654
Google Scholar
[18] Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961
Google Scholar
[19] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185
Google Scholar
[20] Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z, Gong Q H 2012 ACS Nano 6 1438
Google Scholar
-
-
[1] Wang C C, Liu X S, Wang Z Y, Zhao M, He H, Zou J Y 2018 Chin. Phys. B 27 118106
Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nature Nanotech. 7 699
Google Scholar
[3] Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C, Wu J Y 2018 Chin. Phys. B 27 056104
Google Scholar
[4] 董海明 2013 62 206101
Google Scholar
Dong H M 2013 Acta Phys. Sin. 62 206101
Google Scholar
[5] Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934
Google Scholar
[6] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nature Chem. 5 263
Google Scholar
[7] 顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 65 018102
Google Scholar
Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102
Google Scholar
[8] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802
Google Scholar
Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Chi Y 2014 Acta Phys. Sin. 63 217802
Google Scholar
[9] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[11] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497
Google Scholar
[12] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416
Google Scholar
[13] Wang K P, Wang J, Fan J T, Lotya M, O’Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260
Google Scholar
[14] Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001
Google Scholar
[15] Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A, Trusheim M, Hatami F, Heinz T, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119
Google Scholar
[16] Wu S F, Buckley S, Jones A M, Ross J S, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Hatami F, Vuckovic J, Majumdar A, Xu X D 2014 2D Mater. 1 011001
[17] Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mullen K, Moerner W E 2009 Nature Photon. 3 654
Google Scholar
[18] Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961
Google Scholar
[19] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185
Google Scholar
[20] Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z, Gong Q H 2012 ACS Nano 6 1438
Google Scholar
Catalog
Metrics
- Abstract views: 10443
- PDF Downloads: 115
- Cited By: 0