Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

Jia Xiao-Fang Huo Qing-Yu Zhao Chun-Wang

Citation:

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The experimental results of red-shift and blue-shift in absorption spectrum of Mo-doped ZnO are in mutual contradiction, and this phenomenon has not been explained rationally so far. For explaining this phenomenon, we analyze the energy band structure, state density, and absorption-spectrum distributions for each of Zn0.9583Mo0.0417O, Zn0.9375Mo0.0625O and Zn14Mo2O by first-principles calculation. The results show that within a limited doping amount range of 2.08 at%-3.13 at%, the higher Mo doping amount results in higher doping system volume, higher formation energy, lower system stability, and more difficult to dope. Meanwhile, all doping systems are converted into n-type degenerate semiconductors. Compared with the band gap of pure ZnO, the band gap of each doping system becomes narrow and the absorption spectrum shows red-shift. The higher the Mo doping amount, the weaker the narrowing of band gap becomes and the weaker the red-shift in absorption spectrum as well as the lower the electronic effective mass and the lower the electronic concentration; the lower the electronic mobility, the lower the electronic conductivity is; the lower the electronic magnetic moment is. The Curie temperature of doping system can reach a temperature higher than room temperature.
      Corresponding author: Huo Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] Qu Ling-Feng, Hou Qing-Yu, Zhao Chun-Wang. Optical bandgap and absorption spectra of Y doped ZnO studied by first-principle calculations. Acta Physica Sinica, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study of the electronic structures and absorption spectrum of Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [7] Hou Qing-Yu, Li Wen-Cai, Zhao Chun-Wang. Effect of In–2N heavy co-doping and preferred orientation on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [8] Xu Zhen-Chao, Hou Qing-Yu. GGA+U study on the effects of Ag doping on the electronic structures and absorption spectra of ZnO. Acta Physica Sinica, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [9] Mao Fei, Hou Qing-Yu, Zhao Chun-Wang, Guo Shao-Qiang. First-principle study on the effect of high Pr doping on the optical band gap and absorption spectra of TiO2. Acta Physica Sinica, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [10] Hou Qing-Yu, Guo Shao-Qiang, Zhao Chun-Wang. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [11] Xu Zhao-Peng, Wang Yong-Zhen, Zhang Wei, Wang Qian, Wu Guo-Qing. First-principle study on the effects of Tl doping on the band gap and the band-edge of optical absorption of InI. Acta Physica Sinica, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [12] Guo Shao-Qiang, Hou Qing-Yu, Zhao Chun-Wang, Mao Fei. First principles study of the effect of high V doping on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [13] Hou Qing-Yu, Lü Zhi-Yuan, Zhao Chun-Wang. Effects of V-heavy-doped ZnO on electric conductivity performance and absorption spectrum. Acta Physica Sinica, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [14] Hou Qing-Yu, Dong Hong-Ying, Ma Wen, Zhao Chun-Wang. First-principle study on the effect of high Ga doping on the optical band gap and the band-edge of optical absorption of ZnO. Acta Physica Sinica, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [15] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effect of high Mn doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [16] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [17] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhang Bing. First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2. Acta Physica Sinica, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effects of high Al doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [19] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [20] Xu Ling, Tang Chao-Qun, Qian Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2. Acta Physica Sinica, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
Metrics
  • Abstract views:  7840
  • PDF Downloads:  351
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2016
  • Accepted Date:  28 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map