Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method

Zhou Guang-Yu Chen Li Zhang Hong-Yan Cui Hai-Hang

Citation:

Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method

Zhou Guang-Yu, Chen Li, Zhang Hong-Yan, Cui Hai-Hang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Studies of the driving force of the self-propulsion Janus particles are very important in the fields of micro-power and nano-motor. In this paper, we choose the micron Pt-SiO2-type Janus particle as a research object, which is propelled by self-generated concentration gradient in the dilute solution of H2O2, focusing on the self-propulsion of the single particle. According to the force analysis of the Janus particle, the surface force can be decomposed into the viscous resistance of the fluid, the Brownian force derived from the molecular thermal fluctuation, and the diffusiophoresis caused by the diffusion of the solute component. The main aim of this paper is to find the way to accurately simulate the diffusiophoresis generated by the huge concentration gradient on a microscale. The lattice Boltzmann method (LBM) is a modern mesoscopic method based on the microscopic particle characteristics of the fluid, which makes it more intuitive to deal with the interaction between the fluid and solid. It is more advantageous than the traditional numerical method in the description of this micro-interface dynamic problem, i.e., the self-propulsion of Janus particle. On a certain time scale, when the Janus particle shows the directional motion, the influence of the Brownian force can be ignored. Thus, the analytical process can be simplified. Based on the momentum theorem, the method of calculating the diffusiophoresis produced by concentration diffusion is proposed. We introduce the momentum exchange in the half-way bounce-back scheme of LBM into the model of the multicomponent diffusion and reaction. Through counting the surface force we can obtain the diffusiophoresis acting on the Janus particle. Moreover, this diffusiophoresis model is modified by comparing the experimental fluid resistance with simulated one. This comparision verifies the validity of the diffusiophoresis model. Then, the analysis of the variation of diffusiophoresis proves that the value of diffusiophoresis is independent of the fluid velocity. Through the further application of this model, the different shapes of Janus particles with the same volume are compared in simulations. The results show that the self-diffusiophoresis is mainly determined by the axial projection area. In addition, the reaction area of the particle also affects the value of the diffusiophoresis.
      Corresponding author: Chen Li, jasonchencl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China for Emergency Management Projects (Grant No. 11447133), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11602187), the Project of the Natural Science Foundation of Shaanxi Province for Youth Talent, China (Grant No. 2016JQ1008), the Scientific Research Program Funded by Shanxi Provincial Education Department, China (Grant No. 15JK1385), and the Project from State Key Laboratory of Building Science and Technology in Western China.
    [1]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) p399 (in Chinese) [赵亚溥 2012 表面与界物理力学 (北京: 科学版社) 第 399 页]

    [2]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555

    [3]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [4]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self Assembly and Applications (USA: RSC Publishing Press) pp1-25

    [5]

    Chernyak V G, Starikov S A, Beresnev S A 2001 J. Appl. Mech. Tech. Phys. 42 445

    [6]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [7]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [8]

    Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 J. Phys. Chem. A 114 5462

    [10]

    Zheng X, Hagen B T, Kaiser A, Wu M, Cui H H, Silber-Li Z, Lwen H 2013 Phys. Rev. E 88 032304

    [11]

    Gong C L 2013 M. S. Thesis ( Xian: Xi'an University of Architecture and Technology) (in Chinese) [宫春亮 2013 硕士学位论文 (西安: 西安建筑科技大学)]

    [12]

    Crdova-Figueroa U M, Brady J F 2008 Phys. Rev. Lett. 100 158303

    [13]

    de Buyl P, Kapral R 2013 Nanoscale 5 1337

    [14]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014 Chinese J. Hydrodynamics 04 377 (in Chinese) [胡静, 张鸿雁, 郑旭, 崔海航 2014 水动力学研究与进展 04 377]

    [15]

    Cui H H, Tan X J, Zhang H Y 2014 Nanotechnology and Precision Engineering 12 340 (in Chinese) [崔海航, 谭晓君, 张鸿雁 2014 纳米技术与精密工程 12 340]

    [16]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p10 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann 方法的原理及应用(北京: 科学出版社) 第 10 页]

    [17]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [18]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [19]

    Zhang R L, Di Q W, Wang X L, Ding W P, Gong W 2012 Mechanics in Engineering 2 10 (in Chinese) [张任良, 狄勤丰, 王新亮, 丁伟朋, 龚玮 2012 力学与实践 2 10]

    [20]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 07403 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 63 074703]

    [21]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese) [王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 65 220201]

    [22]

    Wu M L 2014 M. S. Thesis (Xi'an: Xi'an University of Architecture and Technology) (in Chinese) [武美玲 2014 硕士学位论文 (西安: 西安建筑科技大学)]

    [23]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015 Acta Phys. Sin. 64 134705 (in Chinese) [崔海航, 谭晓君, 张鸿雁, 陈力 2015 64 134705]

    [24]

    Casson V, Maschio G 2011 Ind. Eng. Chem. Res. 51 7526

    [25]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [26]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [27]

    Zhang T 2001 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张婷 2012 博士学位论文 (武汉: 华中科技大学)]

  • [1]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) p399 (in Chinese) [赵亚溥 2012 表面与界物理力学 (北京: 科学版社) 第 399 页]

    [2]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555

    [3]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [4]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self Assembly and Applications (USA: RSC Publishing Press) pp1-25

    [5]

    Chernyak V G, Starikov S A, Beresnev S A 2001 J. Appl. Mech. Tech. Phys. 42 445

    [6]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [7]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [8]

    Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 J. Phys. Chem. A 114 5462

    [10]

    Zheng X, Hagen B T, Kaiser A, Wu M, Cui H H, Silber-Li Z, Lwen H 2013 Phys. Rev. E 88 032304

    [11]

    Gong C L 2013 M. S. Thesis ( Xian: Xi'an University of Architecture and Technology) (in Chinese) [宫春亮 2013 硕士学位论文 (西安: 西安建筑科技大学)]

    [12]

    Crdova-Figueroa U M, Brady J F 2008 Phys. Rev. Lett. 100 158303

    [13]

    de Buyl P, Kapral R 2013 Nanoscale 5 1337

    [14]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014 Chinese J. Hydrodynamics 04 377 (in Chinese) [胡静, 张鸿雁, 郑旭, 崔海航 2014 水动力学研究与进展 04 377]

    [15]

    Cui H H, Tan X J, Zhang H Y 2014 Nanotechnology and Precision Engineering 12 340 (in Chinese) [崔海航, 谭晓君, 张鸿雁 2014 纳米技术与精密工程 12 340]

    [16]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p10 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann 方法的原理及应用(北京: 科学出版社) 第 10 页]

    [17]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [18]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [19]

    Zhang R L, Di Q W, Wang X L, Ding W P, Gong W 2012 Mechanics in Engineering 2 10 (in Chinese) [张任良, 狄勤丰, 王新亮, 丁伟朋, 龚玮 2012 力学与实践 2 10]

    [20]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 07403 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 63 074703]

    [21]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese) [王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 65 220201]

    [22]

    Wu M L 2014 M. S. Thesis (Xi'an: Xi'an University of Architecture and Technology) (in Chinese) [武美玲 2014 硕士学位论文 (西安: 西安建筑科技大学)]

    [23]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015 Acta Phys. Sin. 64 134705 (in Chinese) [崔海航, 谭晓君, 张鸿雁, 陈力 2015 64 134705]

    [24]

    Casson V, Maschio G 2011 Ind. Eng. Chem. Res. 51 7526

    [25]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [26]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [27]

    Zhang T 2001 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张婷 2012 博士学位论文 (武汉: 华中科技大学)]

  • [1] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [2] Lattice Boltzmann Simulation on Two Dimensional Vapour Bubble Ripening. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [5] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [6] Zhang Ting, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of dissolution and precipitation in porous media. Acta Physica Sinica, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [7] Zhang Ya, Pan Guang, Huang Qiao-Gao. Numerical investigation on drag reduction with hydrophobic surface by lattice Boltzmann method. Acta Physica Sinica, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] Huang Qiao-Gao, Pan Guang, Song Bao-Wei. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces. Acta Physica Sinica, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] Liu Qiu-Zu, Kou Zi-Ming, Jia Yue-Mei, Wu Juan, Han Zhen-Nan, Zhang Qian-Qian. Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [11] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [12] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [14] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] Zhang Xin-Ming, Zhou Chao-Ying, Islam Shams, Liu Jia-Qi. Three-dimensional cavitation simulation using lattice Boltzmann method. Acta Physica Sinica, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [17] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [18] Zhang Chao-Ying, Li Hua-Bing, Tan Hui-Li, Liu Mu-Ren, Kong Ling-Jiang. Lattice Boltzmann simulations of moving elliptic cylinder in a Newtonian fluid. Acta Physica Sinica, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [19] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  6460
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2016
  • Accepted Date:  23 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map