Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system

Li Kai Liu Jun Liu Wei-Qiang

Citation:

Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system

Li Kai, Liu Jun, Liu Wei-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetohydrodynamic (MHD) heat shield system is a novel-concept thermal protection technique for hypersonic vehicles, which has been proved by lots of researchers with both numerical and experimental methods. Most of researchers neglect the Hall effect in their researches. However, in the hypersonic reentry process, the Hall effect is sometimes so significant that the electric current distribution in the shock layer can be changed by the induced electric field. Consequently, the Lorentz force as well as the Joule heat is varied, and thus the efficiency of the MHD heat shield system is affected.In order to analyze the influence of Hall effect, the induced electric field must be taken into consideration. According to the weakly-ionized characteristics of hypersonic flow post bow shock, the magneto-Reynolds number is assumed to be small. Therefore, the Maxwell equations are simplified with the generalized Ohm's law, and the induced electric field is governed by the potential Possion equation. Numerical methods are hence established to solve the Hall electric field equations in the thermochemical nonequilibrium flow field. The electric potential Poisson equation is of significant rigidity and difficult to solve for two reasons. One is that the coefficient matrix may not be diagonally dominant when the Hall parameter is large in the shock layer, and the other is that this matrix including the electric conductivity is discontinuous across the shock. In this paper, a virtual stepping factor is included to strengthen the diagonal dominance and improve the computational stability. Moreover, approximate factor and alternating direction implicit method are employed for further improving the stability. With these methods, a FORTRAN code is written and validated by comparing the numerical results with the analytical ones as well as results available from previous references. After that, relation between the convergence property and the virtual stepping factor is revealed by theoretical analysis and numerical simulations. Based on these work, a local variable stepping factor method is proposed to accelerate the iterating process. Results show that the convergence property is closely related to the mesh density and Hall parameter, and there exists a best stepping factor for a particular mesh as well as a particular Hall parameter. Since the best stepping factor varies a lot for different meshes and different Hall parameter, its appropriate value is hard to choose. The best value of stepping factor coefficient still exists in the local step factor method, but its value range is relatively smaller. More importantly, the local stepping factor method yields better convergence property than the regular constant one when employing a locally refined mesh.
      Corresponding author: Li Kai, LiKai898989@126.com
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ2002) and the National Natural Science Foundation of China (Grant No. 90916018).
    [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014 Acta Phys. Sin. 63 244101 (in Chinese) [朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟 2014 63 244101]

    [2]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [3]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]

    [4]

    Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]

    [5]

    Bityurin V A, Bocharov A N 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014

    [6]

    Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927

    [7]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-28, 2012

    [8]

    Lv H Y, Lee C H 2010 Chin. Sci. Bull. 55 1182 (in Chinese) [吕浩宇, 李椿萱 2010 科学通报 55 1182]

    [9]

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese) [李开, 刘伟强 2016 65 064701]

    [10]

    Hu H Y, Yang Y J, Zhou W J 2011 Chin. J. Theo. App. Mechan. 43 453 (in Chinese) [胡海洋, 杨云军, 周伟江 2011 力学学报 43 453]

    [11]

    Gaitonde D V, Poggie J 2002 40th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 14-17, 2002

    [12]

    Wan T, Candler G V, Macheret S O, Shneider M N 2009 AIAA J. 47 1327

    [13]

    Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)

    [14]

    Lv H Y, Lee C H, Dong H T 2009 Sci. Sin. Phys. Mechan. Astron. 39 435 (in Chinese) [吕浩宇, 李椿萱, 董海涛 2009 中国科学 G辑 39 435]

    [15]

    Peng W, He Y G, Fang G F, Fan X T 2013 Acta Phys. Sin. 62 020301 (in Chinese) [彭武, 何怡刚, 方葛丰, 樊晓腾 2013 62 020301]

    [16]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2000 Progress in Aerospace Sci. 36 1

    [17]

    Zhang K P, Ding G H, Tian Z Y, Pan S, Li H 2009 J. National Univ. Defense Tech. 31 39 (in Chinese) [张康平, 丁国昊, 田正雨, 潘沙, 李桦 2009 国防科技大学学报 31 39]

    [18]

    Tian Z Y, Zhang K P, Pan S, Li H 2008 Chin. Quar. Mechan. 29 72 (in Chinese) [田正雨, 张康平, 潘沙, 李桦 2008 力学季刊 29 72]

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP2867

  • [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014 Acta Phys. Sin. 63 244101 (in Chinese) [朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟 2014 63 244101]

    [2]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [3]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]

    [4]

    Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]

    [5]

    Bityurin V A, Bocharov A N 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014

    [6]

    Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927

    [7]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-28, 2012

    [8]

    Lv H Y, Lee C H 2010 Chin. Sci. Bull. 55 1182 (in Chinese) [吕浩宇, 李椿萱 2010 科学通报 55 1182]

    [9]

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese) [李开, 刘伟强 2016 65 064701]

    [10]

    Hu H Y, Yang Y J, Zhou W J 2011 Chin. J. Theo. App. Mechan. 43 453 (in Chinese) [胡海洋, 杨云军, 周伟江 2011 力学学报 43 453]

    [11]

    Gaitonde D V, Poggie J 2002 40th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 14-17, 2002

    [12]

    Wan T, Candler G V, Macheret S O, Shneider M N 2009 AIAA J. 47 1327

    [13]

    Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)

    [14]

    Lv H Y, Lee C H, Dong H T 2009 Sci. Sin. Phys. Mechan. Astron. 39 435 (in Chinese) [吕浩宇, 李椿萱, 董海涛 2009 中国科学 G辑 39 435]

    [15]

    Peng W, He Y G, Fang G F, Fan X T 2013 Acta Phys. Sin. 62 020301 (in Chinese) [彭武, 何怡刚, 方葛丰, 樊晓腾 2013 62 020301]

    [16]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2000 Progress in Aerospace Sci. 36 1

    [17]

    Zhang K P, Ding G H, Tian Z Y, Pan S, Li H 2009 J. National Univ. Defense Tech. 31 39 (in Chinese) [张康平, 丁国昊, 田正雨, 潘沙, 李桦 2009 国防科技大学学报 31 39]

    [18]

    Tian Z Y, Zhang K P, Pan S, Li H 2008 Chin. Quar. Mechan. 29 72 (in Chinese) [田正雨, 张康平, 潘沙, 李桦 2008 力学季刊 29 72]

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP2867

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Miao Yu-Zhao, Tang Gui-Hua. Thermal protection characteristics of non-enclosed thermal cloak. Acta Physica Sinica, 2024, 73(3): 034401. doi: 10.7498/aps.73.20231262
    [3] Qiang Xiao-Bin, Lu Hai-Zhou. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [4] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] Yao Xiao, Liu Wei-Qiang, Tan Jian-Guo. Analysis of magnetohydrodynamic drag character for hypersonic vehicles. Acta Physica Sinica, 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [6] Li Kai, Liu Jun, Liu Wei-Qiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model. Acta Physica Sinica, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [7] Li Kai, Liu Wei-Qiang. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles. Acta Physica Sinica, 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [8] Li Shao-Feng, Yang Lian-Gui, Song Jian. Nonlinear solitary Rossby waves with external heating source and effect topographic effect in stratified flows described by the inhomogeneous Schrdinger equation. Acta Physica Sinica, 2015, 64(19): 199201. doi: 10.7498/aps.64.199201
    [9] Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben. Hall effect of different textured CVD diamond films. Acta Physica Sinica, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [10] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [11] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [12] Peng Wu, He Yi-Gang, Fang Ge-Feng, Fan Xiao-Teng. An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method. Acta Physica Sinica, 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [13] Hou Bi-Hui, Liu Feng-Yan, Jiao Bin, Yue Ming. Study of electron density of nanostructure metal Tm. Acta Physica Sinica, 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [14] Wang Jing-Wei, Bian Ji-Ming, Sun Jing-Chang, Liang Hong-Wei, Zhao Jian-Ze, Du Guo-Tong. Ag doped p-type ZnO films and its optical and electrical properties. Acta Physica Sinica, 2008, 57(8): 5212-5216. doi: 10.7498/aps.57.5212
    [15] Liu Kui, Ding Hong-Lin, Zhang Xian-Gao, Yu Lin-Wei, Huang Xin-Fan, Chen Kun-Ji. Simulation of a triple-gate single electron FET memory with a quantum dot floating gate and a quantum wire channel. Acta Physica Sinica, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [16] Luo Cheng-Lin, Yang Bing-Chu, Rong Mao-Hua. Influence of magnetic field on the morphology of Zn electrodeposits grown on filter paper. Acta Physica Sinica, 2006, 55(7): 3778-3784. doi: 10.7498/aps.55.3778
    [17] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [18] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [19] HU XIANG-MING, PENG JIN-SHENG. QUANTUM BEAT LASER:TWO-MODE SUB-POISSONIAN LIGHT. Acta Physica Sinica, 1998, 47(8): 1296-1303. doi: 10.7498/aps.47.1296
    [20] QING CHENG-RUI, ZHOU YU-MEI. THE FREE BOUNDARY SOLUTION TO THE EQUATION OF PLASMA MAGNETOHYDRODYNAMIC EQUILIBRIUM WITH AXISYMMETRY AND NON-CIRCULAR CROSS-SECTION. Acta Physica Sinica, 1980, 29(1): 106-110. doi: 10.7498/aps.29.106
Metrics
  • Abstract views:  6596
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2016
  • Accepted Date:  22 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map