-
In this paper, we simulate numerically the dissolution and precipitation in porous media by using the lattice Boltzmann method (LBM). The fluid flow in porous media is simulated by using a multiple-relaxation-time (MRT) LBM, while a D2Q9 lattice BGK model is used for reactive solute transport. Frst, the code of LBM is tested by simulating the diffusion and reaction at a boundary in an open rectangular domain, and comparing the results with the analytic solution. Then, the effects of the Reynolds number (Re), the Schmidt number (Sc) and the Damkohler number (Da) on the variations of the geometry of the porous media and the concentration field are carefully studied. It can be found that for the dissolution (precipitation), as Re is increased, the porosity of the porous media will be increased (decreased), and the average concentration will be decreased (increased). Besides, at low Damkohler numbers or Schmidt numbers, the dissolution and precipitation will be reaction-controlled and are highly uniform. However, as Da or Sc is high, the dissolution and precipitation will be diffution-controlled, and mainly occur in the upstream and large pore space.
-
Keywords:
- porous media /
- dissolution/precipitation /
- lattice Boltzmann method
[1] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[2] Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 62 084703]
[3] Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]
[4] Wells J T, Janecky D R, Travis B J 1991 Physics D 47 115
[5] Janecky D R, Chen S, Dawson S, Eggert K C, Travis B J 1992 Proceedings of the 7th International Symposium on Water-Rock Interaction Park City, United States, July 13-18, 1992 p1043
[6] Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[7] Kingdon R D, Schofield V 1992 J. Phys. A 25 907
[8] Dawson S P, Chen S, Doolen G D 1993 J. Chem. Phys. 98 1514
[9] Kelemen P B, Whitehead J A, Aharonov E, Jordahl K A 1995 J. Geophys. Res. 100 475
[10] He X, Li N, Goldstein B 2000 Mol. Simul. 25 145
[11] Kang Q, Zhang D, Chen S, He X 2002 Phys. Rev. E 65 036318
[12] Kang Q, Zhang D, Chen S 2003 J. Geophys. Res. 108 2505
[13] Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203
[14] Chen L, Kang Q, Carey B, Tao W Q 2014 Int. J. Heat Mass Transfer 75 483
[15] Chen L, Kang Q, Viswanathan H S, Tao W Q 2014 Water Resour. Res. 50 9343
[16] Nogues J P, Fitts J P, Celia M A, Peters C A 2013 Water Resour. Res. 49 6006
[17] Tartakovsky A M, Meakin P, Scheibe T D, Eichler West R M 2007 J. Comput. Phys. 222 654
[18] Yoon H, Valocchi A J, Werth C J, Dewers T 2012 Water Resour. Res. 48 W02524
[19] Huber C, Shafei B, Parmigiani A 2014 Geochim. Cosmochim. Acta 124 109
[20] Li X, Huang H, Meakin P 2008 Water Resour. Res. 44 W12407
[21] Luo H, Quintard M, Debenest G, Laouafa F 2012 Comput. Geosci. 16 913
[22] Pan C, Luo L L, Miller C T 2006 Comput. Fluids 35 898
[23] Chai Z H, Shi B C, Lu J H, Guo Z L 2010 Comput. Fluids 39 2069
[24] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701
[25] Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 11 374
-
[1] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[2] Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 62 084703]
[3] Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]
[4] Wells J T, Janecky D R, Travis B J 1991 Physics D 47 115
[5] Janecky D R, Chen S, Dawson S, Eggert K C, Travis B J 1992 Proceedings of the 7th International Symposium on Water-Rock Interaction Park City, United States, July 13-18, 1992 p1043
[6] Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[7] Kingdon R D, Schofield V 1992 J. Phys. A 25 907
[8] Dawson S P, Chen S, Doolen G D 1993 J. Chem. Phys. 98 1514
[9] Kelemen P B, Whitehead J A, Aharonov E, Jordahl K A 1995 J. Geophys. Res. 100 475
[10] He X, Li N, Goldstein B 2000 Mol. Simul. 25 145
[11] Kang Q, Zhang D, Chen S, He X 2002 Phys. Rev. E 65 036318
[12] Kang Q, Zhang D, Chen S 2003 J. Geophys. Res. 108 2505
[13] Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203
[14] Chen L, Kang Q, Carey B, Tao W Q 2014 Int. J. Heat Mass Transfer 75 483
[15] Chen L, Kang Q, Viswanathan H S, Tao W Q 2014 Water Resour. Res. 50 9343
[16] Nogues J P, Fitts J P, Celia M A, Peters C A 2013 Water Resour. Res. 49 6006
[17] Tartakovsky A M, Meakin P, Scheibe T D, Eichler West R M 2007 J. Comput. Phys. 222 654
[18] Yoon H, Valocchi A J, Werth C J, Dewers T 2012 Water Resour. Res. 48 W02524
[19] Huber C, Shafei B, Parmigiani A 2014 Geochim. Cosmochim. Acta 124 109
[20] Li X, Huang H, Meakin P 2008 Water Resour. Res. 44 W12407
[21] Luo H, Quintard M, Debenest G, Laouafa F 2012 Comput. Geosci. 16 913
[22] Pan C, Luo L L, Miller C T 2006 Comput. Fluids 35 898
[23] Chai Z H, Shi B C, Lu J H, Guo Z L 2010 Comput. Fluids 39 2069
[24] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701
[25] Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 11 374
Catalog
Metrics
- Abstract views: 7232
- PDF Downloads: 321
- Cited By: 0