搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器磁控热防护系统建模分析

李开 刘伟强

引用本文:
Citation:

高超声速飞行器磁控热防护系统建模分析

李开, 刘伟强

Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles

Li Kai, Liu Wei-Qiang
PDF
导出引用
  • 针对高超声速飞行器防热, 搭建了螺线管磁控热防护系统的物理模型. 采用低磁雷诺数磁流体数学模型, 分析了外加磁场强度及磁场形态对磁控热防护效果的影响. 对比了三种磁场类型(磁偶极子、螺线管、均布磁场)下磁控热防护效果的差异, 分析了螺线管几何参数对磁控热防护效果的影响. 研究表明, 磁场降低表面热流作用存在饱和现象; 三种磁场形态的磁控热防护能力从小到大依次为磁偶极子、螺线管、均布磁场; 相同驻点磁感应强度条件下, 增大螺线管半径有利于提高磁控热防护效果, 缩短螺线管与驻点距离不利于驻点和肩部防热, 螺线管长度对磁控热防护效果影响相对较小.
    During hypersonic flight, the weakly-ionized plasma layer post shock can be utilized for flow control by externally applying a magnetic field. The Lorentz force, which is induced by the interaction between the ionized air and the magnetic field, decelerates the flow in the shock layer. Consequently, the thickness of the shock layer is increased and the convective heat flux can be mitigated. This so-called magnetohydrodynamic (MHD) heat shield system has been proved to be effective in heat flux mitigation by many researchers.Different from the dipole magnet conventionally used in previous researches on MHD heat shield, a normal columned solenoid-based MHD thermal protection system model is built in this paper. The present numerical analysis is mainly based on the low magneto-Reynolds MHD model, which neglects the induction magnetic field. Hall effect and the ion-slip effect are also neglected here because an insulating wall is assumed. With these hypothesis, a series of axisymmetric simulations on the flow field of Japanese Orbital Reentry Experimental Capsule (OREX) are performed to analyze the influence of different externally applied magnetic fields on the efficiency of MHD thermal protection. First, based on the dipole magnet field, the influence of magnetic induction density is analyzed. Second, differences between the efficiency of MHD thermal protection under three types of magnetic field, namely dipole magnet, solenoid magnet, and uniform magnet field are compared. Finally, the influence of the geometric parameters of solenoid magnet on the MHD thermal protection is analyzed. Results show that, saturation effect exists in the process of MHD heat flux mitigation and it confines the effectiveness of MHD heat shield system. Thermal protection capabilities under three types of magnetic field are ranked from weak to strong as dipole magnet, solenoid magnet, and uniform magnet field. Under the same magnetic induction intensity at the stagnation point, first, the increase of solenoid radius improves its effectiveness in MHD thermal protection; second, the influence of solenoid length on the efficiency of MHD thermal protection is weak, indicating that the solenoid length can be optimized with the remaining two factors, namely the exciting current density and the total weight of solenoid magnet. Finally, the closer distance between the solenoid and stagnation point has negative influence on MHD thermal protection for the stagnation and the shoulder area of the reentry capsule.
      通信作者: 李开, LiKai898989@126.com
    • 基金项目: 湖南省自然科学基金(批准号: 13JJ2002)和国家自然科学基金(批准号: 90916018) 资助的课题.
      Corresponding author: Li Kai, LiKai898989@126.com
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ2002), and the National Natural Science Foundation of China (Grant No. 90916018).
    [1]

    Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401

    [2]

    Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]

    [3]

    Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121

    [4]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [5]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]

    [6]

    Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)

    [7]

    Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]

    [8]

    Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]

    [9]

    Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701

    [10]

    Bityurin V A, Bocharov A N 2011 AIAA 2011-3463

    [11]

    Bityurin V A, Bocharov A N 2014 AIAA 2014-1033

    [12]

    Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625

    [14]

    Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.

    [15]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804

    [16]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274

    [17]

    Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]

    [18]

    L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]

    [19]

    Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)

    [20]

    Miller C G 1984 NASA-TP-2334

  • [1]

    Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401

    [2]

    Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]

    [3]

    Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121

    [4]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]

    [5]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]

    [6]

    Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)

    [7]

    Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]

    [8]

    Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]

    [9]

    Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701

    [10]

    Bityurin V A, Bocharov A N 2011 AIAA 2011-3463

    [11]

    Bityurin V A, Bocharov A N 2014 AIAA 2014-1033

    [12]

    Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625

    [14]

    Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.

    [15]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804

    [16]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274

    [17]

    Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]

    [18]

    L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]

    [19]

    Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)

    [20]

    Miller C G 1984 NASA-TP-2334

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 苗钰钊, 唐桂华. 非封闭式热斗篷热防护特性.  , 2024, 73(3): 034401. doi: 10.7498/aps.73.20231262
    [3] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用.  , 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [4] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [6] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性.  , 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [7] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [8] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析.  , 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [9] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性.  , 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [10] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性.  , 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [11] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响.  , 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [12] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究.  , 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [13] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究.  , 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [14] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [15] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究.  , 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [16] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析.  , 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
    [17] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用.  , 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [18] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [19] 方允樟, 许启明, 郑金菊, 吕葆华, 潘日敏, 叶慧群, 郑建龙, 范晓珍. FeCo基磁芯螺线管巨磁阻抗效应与磁芯长度关系的研究.  , 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [20] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究.  , 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
计量
  • 文章访问数:  6634
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-16
  • 修回日期:  2015-11-19
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map