搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变均布霍尔系数的磁控热防护系统霍尔效应影响

李开 柳军 刘伟强

引用本文:
Citation:

基于变均布霍尔系数的磁控热防护系统霍尔效应影响

李开, 柳军, 刘伟强

Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model

Li Kai, Liu Jun, Liu Wei-Qiang
PDF
导出引用
  • 为研究霍尔效应对磁控热防护系统的影响机理,建立并验证了热化学非平衡流场、外加磁场、感应电场的多场耦合数值求解方法.基于均布霍尔系数模型分析了霍尔效应在两种不同磁场强度B0、不同壁面导电条件下对磁控效果的影响.研究表明,不同壁面导电性下霍尔效应的影响规律不同.绝缘壁面条件下,考虑霍尔效应后壁面热流的变化是附面层内洛伦兹力的变化与激波层厚度的减小二者共同作用的结果.B0=0.2 T时洛伦兹力增加附加的流体减速作用占主导,磁控热防护效果优于忽略霍尔效应的情况,并且在霍尔系数为5.0达到最优;而当B0=0.5 T时,激波层变薄对附面层外缘温度的增加占主导,磁控热防护效果变差,并且随霍尔系数的增加壁面热流越来越大.导电壁面条件下,随着霍尔系数的增加,磁控激波以及热防护效果变差,且当 5.0时,磁控热防护系统几乎完全失效.
    There has been a resurgence in the field of magnetohydrodynamic (MHD) flow control in the past 20 years. An increasing demand for sustained hypersonic flight and rapid access to space, along with numerous mechanical and material advances in flight-weight MHD technologies, has aroused renewed interest in this subject area. As a novel application of MHD flow control in the thermal protection field, MHD heat shield system has been proved to be of great intrinsic value by lots of researchers in recent years. Although its theoretical feasibility has been validated, there are many problems that remain to be further investigated. Among those problems, the Hall effect is a remarkable one that may affect the effectiveness of MHD flow control. Considering the fact that it is not sufficient to evaluate the Hall effect by merely using the chemical reaction model implemented in the nonequilibrium flow simulation to calculate the Hall parameter, a parametric study is conducted under the assumption of simplified uniform Hall parameter. First, coupling numerical methods are constructed and validated to solve the thermochemical nonequilibrium flow field and the electro-magnetic field. Second, a series of numerical simulations of the MHD head shield system is conducted with different magnitudes of Hall parameter under two magnetic induction intensities (B0=0.2 T, 0.5 T). Finally, the influence of Hall effect on the performance of MHD heat shield system is analyzed. Results indicate that Hall effect is closely related to the wall conductivity. If the vehicle surface is regarded as an insulating wall, the heat flux variation is co-determined by varying the Lorentz forces within the boundary layer and the shock-control effect. Compared with the one neglecting the Hall effect, the heat flux with Hall effect is slightly mitigated as the increase of Lorentz forces in the boundary layer dominates when the stagnation magnetic induction intensity B0 equals 0.2 T. However, the heat flux is increased when B0 equals 0.5 T, because the decrease of shock stand-off distance dominates which increases the gas temperature outside the boundary layer. Moreover, in this case the larger the Hall parameter, the higher the heat flux will be. As for the conductive wall, the performance of MHD heat shield system becomes worse with the increase of Hall parameter, and while it is equal to or higher than 5.0, this system loses its effectiveness.
      通信作者: 柳军, liujun@nudt.edu.cn
    • 基金项目: 湖南省自然科学基金(批准号:13JJ2002)和国家自然科学基金(批准号:90916018)资助的课题.
      Corresponding author: Liu Jun, liujun@nudt.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ2002) and the National Natural Science Foundation of China (Grant No. 90916018).
    [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014Acta Phys.Sin. 63 244101(in Chinese)[朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟2014 63 244101]

    [2]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015Acta Phys.Sin. 64 015101(in Chinese)[赵光银, 李应红, 梁华, 化为卓, 韩孟虎2015 64 015101]

    [3]

    Tian Z Y, Zhang K P, Pan S, Li H 2008Chin.Quar.Mechan. 29 72(in Chinese)[田正雨, 张康平, 潘沙, 李桦2008力学季刊29 72]

    [4]

    Zhang S H, Zhao H, Du A M, Cao X 2013Sci.China:Tech.Sci. 43 1242(in Chinese)[张绍华, 赵华, 杜爱民, 曹馨2013中国科学:技术科学43 1242]

    [5]

    Bityurin V A, Bocharov A N 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-1033

    [6]

    Bisek N J, Gosse R, Poggie J 2013J.Spacecraft Rockets 50 927

    [7]

    Yoshino T, Fujino T, Ishikawa M 201041st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010

    [8]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009J.Spacecraft Rockets 46 274

    [9]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 201218th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-282012, AIAA 2012-5804

    [10]

    Otsu H, Konigorski D, Abe T 2010AIAA J. 48 2177

    [11]

    Matsushita K 2003Ph.D.Dissertation(Tokyo:University of Tokyo)

    [12]

    Otsu H, Matsushita K, Konigorski D, Funaki I, Abe T 2004AIAA 2004-2167

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007J.Spacecraft Rockets 44 625

    [14]

    Matsuda A, Kawamura M, Takizawa Y, Otsu H, Konigorski D, Sato S, Abek T 200745th AIAA Aerospace Sciences Meeting and Exhibit Reno Nevada, January 8-112007

    [15]

    LH Y, Lee C H 2010Chin.Sci.Bull. 55 1182(in Chinese)[吕浩宇, 李椿萱2010科学通报55 1182]

    [16]

    Li K, Liu W Q 2016Acta Phys.Sin. 65 064701(in Chinese)[李开, 刘伟强2016 65 064701]

    [17]

    Liu J 2004Ph.D.Dissertation(Changsha:National University of Defense Technology)(in Chinese)[柳军2004博士论文(长沙:国防科技大学)]

    [18]

    Bisek N J 2010Ph.D.Dissertation(Michigan:University of Michigan)

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP-2867

    [20]

    Fujino T, Ishikawa M 2006IEEE Trans.Plasma Sci. 34 409

  • [1]

    Zhu Y J, Jiang Y S, Hua H Q, Zhang C H, Xin C W 2014Acta Phys.Sin. 63 244101(in Chinese)[朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟2014 63 244101]

    [2]

    Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015Acta Phys.Sin. 64 015101(in Chinese)[赵光银, 李应红, 梁华, 化为卓, 韩孟虎2015 64 015101]

    [3]

    Tian Z Y, Zhang K P, Pan S, Li H 2008Chin.Quar.Mechan. 29 72(in Chinese)[田正雨, 张康平, 潘沙, 李桦2008力学季刊29 72]

    [4]

    Zhang S H, Zhao H, Du A M, Cao X 2013Sci.China:Tech.Sci. 43 1242(in Chinese)[张绍华, 赵华, 杜爱民, 曹馨2013中国科学:技术科学43 1242]

    [5]

    Bityurin V A, Bocharov A N 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-1033

    [6]

    Bisek N J, Gosse R, Poggie J 2013J.Spacecraft Rockets 50 927

    [7]

    Yoshino T, Fujino T, Ishikawa M 201041st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010

    [8]

    Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009J.Spacecraft Rockets 46 274

    [9]

    Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 201218th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24-282012, AIAA 2012-5804

    [10]

    Otsu H, Konigorski D, Abe T 2010AIAA J. 48 2177

    [11]

    Matsushita K 2003Ph.D.Dissertation(Tokyo:University of Tokyo)

    [12]

    Otsu H, Matsushita K, Konigorski D, Funaki I, Abe T 2004AIAA 2004-2167

    [13]

    Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007J.Spacecraft Rockets 44 625

    [14]

    Matsuda A, Kawamura M, Takizawa Y, Otsu H, Konigorski D, Sato S, Abek T 200745th AIAA Aerospace Sciences Meeting and Exhibit Reno Nevada, January 8-112007

    [15]

    LH Y, Lee C H 2010Chin.Sci.Bull. 55 1182(in Chinese)[吕浩宇, 李椿萱2010科学通报55 1182]

    [16]

    Li K, Liu W Q 2016Acta Phys.Sin. 65 064701(in Chinese)[李开, 刘伟强2016 65 064701]

    [17]

    Liu J 2004Ph.D.Dissertation(Changsha:National University of Defense Technology)(in Chinese)[柳军2004博士论文(长沙:国防科技大学)]

    [18]

    Bisek N J 2010Ph.D.Dissertation(Michigan:University of Michigan)

    [19]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA TP-2867

    [20]

    Fujino T, Ishikawa M 2006IEEE Trans.Plasma Sci. 34 409

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应.  , 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 苗钰钊, 唐桂华. 非封闭式热斗篷热防护特性.  , 2024, 73(3): 034401. doi: 10.7498/aps.73.20231262
    [3] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运.  , 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [6] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型.  , 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [7] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性.  , 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [8] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究.  , 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [9] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析.  , 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [10] 苏青峰, 刘长柱, 王林军, 夏义本. 不同织构CVD金刚石膜的Hall效应特性.  , 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [11] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [12] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件.  , 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [13] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [14] 侯碧辉, 刘凤艳, 焦彬, 岳明. 纳米金属Tm的电子浓度研究.  , 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [15] 王经纬, 边继明, 孙景昌, 梁红伟, 赵涧泽, 杜国同. Ag掺杂p型ZnO薄膜及其光电性能研究.  , 2008, 57(8): 5212-5216. doi: 10.7498/aps.57.5212
    [16] 罗成林, 杨兵初, 戎茂华. 磁场对滤纸上Zn电解沉积物形貌的影响.  , 2006, 55(7): 3778-3784. doi: 10.7498/aps.55.3778
    [17] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究.  , 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [18] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究.  , 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [19] 朱学光, 匡光力, 谢纪康. 三维洞穴环天线的耦合计算.  , 2000, 49(10): 1978-1981. doi: 10.7498/aps.49.1978
    [20] 沈学民. 托卡马克中极向静电天线的离子Bernstein波的耦合计算.  , 1991, 40(8): 1280-1289. doi: 10.7498/aps.40.1280
计量
  • 文章访问数:  6516
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map