搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非封闭式热斗篷热防护特性

苗钰钊 唐桂华

引用本文:
Citation:

非封闭式热斗篷热防护特性

苗钰钊, 唐桂华

Thermal protection characteristics of non-enclosed thermal cloak

Miao Yu-Zhao, Tang Gui-Hua
PDF
HTML
导出引用
  • 高超声速飞行器在飞行过程中产生大量气动热, 高效的热防护技术对保证其正常工作具有重要意义. 本文基于热超材料调控热流传播路径思想, 针对高超声速飞行器头锥, 采用坐标变换法设计非封闭式点变换热斗篷及简化近似的多层结构. COMSOL数值模拟研究表明, 两种结构均有效实现导热和辐射热流的热绕流, 使部分热量沿头锥表面传播, 头锥前端温度显著降低, 机体升温速率减缓. 但其热防护性能的提升要求材料固相和辐射热导率低于原隔热材料. 进一步设计了非封闭式域变换热斗篷, 材料固相和辐射热导率均可高于原隔热材料. 模拟结果表明, 热绕流显著提升了域变换热斗篷的热防护能力, 相比于纯隔热材料, 头锥前端温度降低达100 K, 机体降温达10 K, 展现出重要的热防护应用潜力.
    The aerodynamic heat of hypersonic vehicle nose cone can reach tens of MW/m2 during flight, which could be transferred to the interior of hypersonic vehicle in the form of conduction and radiation. High efficient thermal insulation technology is of significance in keeping internal electronic components working safely. Thermal metamaterials can regulate the macroscopic heat flow path, and they are developing rapidly and have a wide application prospect in the field of thermal protection. In this work, a non-enclosed point transformation thermal cloak is designed to guide heat flow around hypersonic vehicle nose cone by using the transformation multithermotics, which can control thermal conduction and radiation simultaneously. A multi-layer structure is designed as cloak’s simplified approximation due to the anisotropic parameters. Based on the software COMSOL, the thermal protection characteristics and heat transfer mechanism of the point transformation cloak and multi-layer structure are studied numerically. The results show that heat can flow around the object in the form of conduction and radiation in both point transformation thermal cloak and multi-layer structure, so the heat transferred to the inner area decreases. Comparing with the thermal insulation material, the heating rate of the protected area slows down, and the temperature in the front of the hypersonic vehicle nose cone is significantly reduced. However, the improvement of the thermal protection performance of point transformation cloak and multi-layer structures requires that the solid thermal conductivity and radiative thermal conductivity of the material are lower than those of the original thermal insulation material. To solve this problem, a non-enclosed region transformation thermal cloak is further proposed. The solid thermal conductivity and radiative thermal conductivity of region transformation thermal cloak are non-singular, which could be higher than those of the original thermal insulation material. Numerical simulation results show that the region transformation thermal cloak can guide heat flow around object, so the thermal protection capability is improved significantly. Comparing with the thermal insulation materials, the temperature of the front of the hypersonic vehicle nose cone is reduced by 100 K, and the temperature of the inner central zone of the hypersonic vehicle nose cone is reduced by 10 K. The non-enclosed region transformation thermal cloak provides a new approach to realizing thermal protection and is suitable for complex target areas, showing great application potential in thermal protection.
      通信作者: 唐桂华, ghtang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52130604, 51825604)资助的课题.
      Corresponding author: Tang Gui-Hua, ghtang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130604, 51825604).
    [1]

    杜晨慧 2023 装备环境工程 20 43

    Du C H 2023 Equip. Environ. Eng. 20 43

    [2]

    桂业伟, 刘磊, 魏东 2020 空气动力学报 38 641Google Scholar

    Gui Y W, Liu L, Wei D 2020 Acta Aerod. Sin. 38 641Google Scholar

    [3]

    谢永旺, 夏雨, 许学伟, 李峥, 陆浩, 许孔力 2022 空天技术 4 73Google Scholar

    Xie Y W, Xia Y, Xu X W, Li Z, Lu H, Xu K L 2022 Aerosp. Technol. 4 73Google Scholar

    [4]

    Su H, Wang J H, He F, Chen L, Ai B C 2019 Int. J. Heat Mass Transfer 129 480Google Scholar

    [5]

    Bohrk H 2015 J. Spacecr. Rockets 52 674Google Scholar

    [6]

    栾芸, 贺菲, 王建华 2023 推进技术 44 22010020Google Scholar

    Luan Y, He F, Wang J H 2023 J. Propul. Technol. 44 22010020Google Scholar

    [7]

    Liu H P, Liu W Q 2016 Acta Astronaut. 118 210Google Scholar

    [8]

    陈连忠, 欧东斌 2010 实验流体力学 24 51Google Scholar

    Chen L Z, Ou D B 2010 J. Exp. Fluid Mech. 24 51Google Scholar

    [9]

    李健, 张凡, 张丽娟, 李文静, 赵英民 2019 北京理工大学学报 39 1051Google Scholar

    Li J, Zhang F, Zhang L J, Li W J, Zhao Y M 2019 Trans. Beijing Inst. Technol. 39 1051Google Scholar

    [10]

    王飞, 王秦阳, 孙创, 康宏琳 2023 航空动力学报 38 1075Google Scholar

    Wang F, Wang Q Y, Sun C, Kang H L 2023 J. Aerosp. Power 38 1075Google Scholar

    [11]

    瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚 2020 材料导报 34 07082Google Scholar

    Hu P, Jiang Y G, Zhang Z M, Feng J Z, Li L J, Feng J 2020 Mater. Rep. 34 07082Google Scholar

    [12]

    苟建军, 肖爽, 胡嘉欣, 高戈, 龚春林 2022 宇航学报 43 983Google Scholar

    Gou J Z, Xiao S, Hu J X, Gao G, Gong C L 2022 J. Astronaut. 43 983Google Scholar

    [13]

    赵越 2015 博士学位论文(西安: 西安交通大学)

    Zhao Y 2015 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [14]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [15]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207Google Scholar

    [16]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303Google Scholar

    [17]

    Lou Q, Xia M G 2023 Chin. Phys. Lett. 40 094401Google Scholar

    [18]

    Zhang J, Zhang H C, Huang Z L, Sun W B, Li Y Y 2022 Chin. Phys. B 31 014402Google Scholar

    [19]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904Google Scholar

    [20]

    Xu L J, Dai G L, Huang J P 2020 Phys. Rev. Appl. 13 024063Google Scholar

    [21]

    Yang S, Wang J, Dai G L, Yang F B, Huang J P 2021 Phys. Rep. 908 1Google Scholar

    [22]

    He B, Yang W, Liu F H 2019 Appl. Math. Lett. 94 99Google Scholar

    [23]

    Maleki H 2016 Chem. Eng. J. 300 98Google Scholar

    [24]

    黄诗瑶 2021硕士学位论文(武汉: 华中科技大学)

    Huang S Y 2021 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [25]

    聂春生, 黄建栋, 王迅, 李宇 2017 空气动力学报 35 760Google Scholar

    Nie C S, Huang J D, Wang X, Li Y 2017 Acta Aerod. Sin. 35 760Google Scholar

    [26]

    姜志杰 2008 硕士学位论文 (长沙: 国防科技大学)

    Jiang Z J 2008 M. S. Thesis (Changsha: National University of Defense Technology

    [27]

    Sha W, Xiao M, Zhang J H, Ren X C, Zhu Z, Zhang Y, Xu G Q, Li H G, Liu X L, Chen X, Gao L, Qiu C W, Hu R 2021 Nat. Commun. 12 7228Google Scholar

    [28]

    Vemuri K P, Bandaru P R 2013 Appl. Phys. Lett. 103 133111Google Scholar

    [29]

    Ji Q X, Qi Y C, Liu C W, Meng S H, Liang J, Kadic M, Fang G D 2022 Int. J. Heat Mass Transfer 189 122716Google Scholar

  • 图 1  几何变换与计算模型 (a)高超声速飞行器壁面热流分布; (b)头锥二维简化模型; (c)点变换热斗篷; (d)域变换热斗篷

    Fig. 1.  Schematic of thermal cloak and computational model: (a) Heat flux of hypersonic vehicle surface; (b) simplified geometry of nose cone; (c) point transformation thermal cloak; (d) region transformation thermal cloak.

    图 2  点变换热斗篷的热防护特性 (a) O点升温曲线; (b) E点升温曲线; (c)曲线R = 0.9R2的温度分布

    Fig. 2.  Thermal protection characteristics of point transformation thermal cloak: (a) Temperature variation at point O against time; (b) temperature variation at point E against time; (c) temperature profile on the curve R = 0.9R2.

    图 3  多层结构热防护特性 (a) O点升温曲线; (b) E点升温曲线; (c)曲线R = 0.9R2温度分布

    Fig. 3.  Thermal protection characteristics of multilayers cloak: (a) Temperature variation at point O against time; (b) temperature variation at point E against time; (c) temperature profile on the curve R = 0.9R2.

    图 4  域变换热斗篷热防护特性 (a) O点升温曲线; (b) F点升温曲线; (c)曲线R = 0.96R3温度分布; (d) M点热流密度变化曲线

    Fig. 4.  Thermal protection characteristics of region transformation thermal cloak: (a) Temperature variation at point O against time; (b) temperature variation at point F against time; (c) temperature profile on the curve R = 0.96R3; (d) heat flux at point M against time.

    Baidu
  • [1]

    杜晨慧 2023 装备环境工程 20 43

    Du C H 2023 Equip. Environ. Eng. 20 43

    [2]

    桂业伟, 刘磊, 魏东 2020 空气动力学报 38 641Google Scholar

    Gui Y W, Liu L, Wei D 2020 Acta Aerod. Sin. 38 641Google Scholar

    [3]

    谢永旺, 夏雨, 许学伟, 李峥, 陆浩, 许孔力 2022 空天技术 4 73Google Scholar

    Xie Y W, Xia Y, Xu X W, Li Z, Lu H, Xu K L 2022 Aerosp. Technol. 4 73Google Scholar

    [4]

    Su H, Wang J H, He F, Chen L, Ai B C 2019 Int. J. Heat Mass Transfer 129 480Google Scholar

    [5]

    Bohrk H 2015 J. Spacecr. Rockets 52 674Google Scholar

    [6]

    栾芸, 贺菲, 王建华 2023 推进技术 44 22010020Google Scholar

    Luan Y, He F, Wang J H 2023 J. Propul. Technol. 44 22010020Google Scholar

    [7]

    Liu H P, Liu W Q 2016 Acta Astronaut. 118 210Google Scholar

    [8]

    陈连忠, 欧东斌 2010 实验流体力学 24 51Google Scholar

    Chen L Z, Ou D B 2010 J. Exp. Fluid Mech. 24 51Google Scholar

    [9]

    李健, 张凡, 张丽娟, 李文静, 赵英民 2019 北京理工大学学报 39 1051Google Scholar

    Li J, Zhang F, Zhang L J, Li W J, Zhao Y M 2019 Trans. Beijing Inst. Technol. 39 1051Google Scholar

    [10]

    王飞, 王秦阳, 孙创, 康宏琳 2023 航空动力学报 38 1075Google Scholar

    Wang F, Wang Q Y, Sun C, Kang H L 2023 J. Aerosp. Power 38 1075Google Scholar

    [11]

    瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚 2020 材料导报 34 07082Google Scholar

    Hu P, Jiang Y G, Zhang Z M, Feng J Z, Li L J, Feng J 2020 Mater. Rep. 34 07082Google Scholar

    [12]

    苟建军, 肖爽, 胡嘉欣, 高戈, 龚春林 2022 宇航学报 43 983Google Scholar

    Gou J Z, Xiao S, Hu J X, Gao G, Gong C L 2022 J. Astronaut. 43 983Google Scholar

    [13]

    赵越 2015 博士学位论文(西安: 西安交通大学)

    Zhao Y 2015 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [14]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [15]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207Google Scholar

    [16]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303Google Scholar

    [17]

    Lou Q, Xia M G 2023 Chin. Phys. Lett. 40 094401Google Scholar

    [18]

    Zhang J, Zhang H C, Huang Z L, Sun W B, Li Y Y 2022 Chin. Phys. B 31 014402Google Scholar

    [19]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904Google Scholar

    [20]

    Xu L J, Dai G L, Huang J P 2020 Phys. Rev. Appl. 13 024063Google Scholar

    [21]

    Yang S, Wang J, Dai G L, Yang F B, Huang J P 2021 Phys. Rep. 908 1Google Scholar

    [22]

    He B, Yang W, Liu F H 2019 Appl. Math. Lett. 94 99Google Scholar

    [23]

    Maleki H 2016 Chem. Eng. J. 300 98Google Scholar

    [24]

    黄诗瑶 2021硕士学位论文(武汉: 华中科技大学)

    Huang S Y 2021 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [25]

    聂春生, 黄建栋, 王迅, 李宇 2017 空气动力学报 35 760Google Scholar

    Nie C S, Huang J D, Wang X, Li Y 2017 Acta Aerod. Sin. 35 760Google Scholar

    [26]

    姜志杰 2008 硕士学位论文 (长沙: 国防科技大学)

    Jiang Z J 2008 M. S. Thesis (Changsha: National University of Defense Technology

    [27]

    Sha W, Xiao M, Zhang J H, Ren X C, Zhu Z, Zhang Y, Xu G Q, Li H G, Liu X L, Chen X, Gao L, Qiu C W, Hu R 2021 Nat. Commun. 12 7228Google Scholar

    [28]

    Vemuri K P, Bandaru P R 2013 Appl. Phys. Lett. 103 133111Google Scholar

    [29]

    Ji Q X, Qi Y C, Liu C W, Meng S H, Liang J, Kadic M, Fang G D 2022 Int. J. Heat Mass Transfer 189 122716Google Scholar

  • [1] 吴文兵, 圣宗强, 吴宏伟. 平板式螺旋相位板的设计与应用.  , 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [2] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究.  , 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [3] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响.  , 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [4] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计.  , 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [5] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用.  , 2016, 65(17): 178103. doi: 10.7498/aps.65.178103
    [6] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析.  , 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [7] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [8] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究.  , 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [9] 毛福春, 李廷华, 黄铭, 杨晶晶, 贾邦婕. 圆柱形热集中器理论、仿真和实现.  , 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [10] 孙健, 刘伟强. 内嵌定向高导热层疏导式结构热防护机理分析.  , 2012, 61(12): 124401. doi: 10.7498/aps.61.124401
    [11] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究.  , 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [12] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用.  , 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [13] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 任意多面体隐身罩材料参数的推导及验证.  , 2011, 60(2): 027801. doi: 10.7498/aps.60.027801
    [14] 吴群, 张狂, 孟繁义, 李乐伟. 三维椭球隐身条件的严格推导及其隐身特性验证.  , 2010, 59(9): 6071-6077. doi: 10.7498/aps.59.6071
    [15] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案.  , 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [16] 吴群, 张狂, 孟繁义, 李乐伟. 正N边形柱的隐身条件的严格推导及其隐身特性验证.  , 2009, 58(3): 1619-1626. doi: 10.7498/aps.58.1619
    [17] 肖 刘, 苏小保, 刘濮鲲. 带状螺旋线研究中的坐标变换.  , 2006, 55(5): 2152-2157. doi: 10.7498/aps.55.2152
    [18] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [19] 王 平, 杨新娥, 宋小会. 具有含时平方反比项的谐振子的路径积分求解.  , 2003, 52(12): 2957-2960. doi: 10.7498/aps.52.2957
    [20] 董全林, 刘彬. 在伽利略坐标变换下的二端面弹性转轴相似动力学方程.  , 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
计量
  • 文章访问数:  2690
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-09-13
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-02-05

/

返回文章
返回
Baidu
map