-
During hypersonic flight, the weakly-ionized plasma layer post shock can be utilized for flow control by externally applying a magnetic field. The Lorentz force, which is induced by the interaction between the ionized air and the magnetic field, decelerates the flow in the shock layer. Consequently, the thickness of the shock layer is increased and the convective heat flux can be mitigated. This so-called magnetohydrodynamic (MHD) heat shield system has been proved to be effective in heat flux mitigation by many researchers.Different from the dipole magnet conventionally used in previous researches on MHD heat shield, a normal columned solenoid-based MHD thermal protection system model is built in this paper. The present numerical analysis is mainly based on the low magneto-Reynolds MHD model, which neglects the induction magnetic field. Hall effect and the ion-slip effect are also neglected here because an insulating wall is assumed. With these hypothesis, a series of axisymmetric simulations on the flow field of Japanese Orbital Reentry Experimental Capsule (OREX) are performed to analyze the influence of different externally applied magnetic fields on the efficiency of MHD thermal protection. First, based on the dipole magnet field, the influence of magnetic induction density is analyzed. Second, differences between the efficiency of MHD thermal protection under three types of magnetic field, namely dipole magnet, solenoid magnet, and uniform magnet field are compared. Finally, the influence of the geometric parameters of solenoid magnet on the MHD thermal protection is analyzed. Results show that, saturation effect exists in the process of MHD heat flux mitigation and it confines the effectiveness of MHD heat shield system. Thermal protection capabilities under three types of magnetic field are ranked from weak to strong as dipole magnet, solenoid magnet, and uniform magnet field. Under the same magnetic induction intensity at the stagnation point, first, the increase of solenoid radius improves its effectiveness in MHD thermal protection; second, the influence of solenoid length on the efficiency of MHD thermal protection is weak, indicating that the solenoid length can be optimized with the remaining two factors, namely the exciting current density and the total weight of solenoid magnet. Finally, the closer distance between the solenoid and stagnation point has negative influence on MHD thermal protection for the stagnation and the shoulder area of the reentry capsule.
-
Keywords:
- MHD flow control /
- hypersonic vehicle /
- thermal protection /
- solenoid magnet
[1] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[2] Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]
[3] Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121
[4] Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]
[5] Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]
[6] Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)
[7] Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]
[8] Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]
[9] Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701
[10] Bityurin V A, Bocharov A N 2011 AIAA 2011-3463
[11] Bityurin V A, Bocharov A N 2014 AIAA 2014-1033
[12] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927
[13] Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625
[14] Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.
[15] Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804
[16] Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274
[17] Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]
[18] L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]
[19] Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)
[20] Miller C G 1984 NASA-TP-2334
-
[1] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[2] Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]
[3] Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121
[4] Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701]
[5] Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 64 015101]
[6] Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)
[7] Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 63 047502]
[8] Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]
[9] Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701
[10] Bityurin V A, Bocharov A N 2011 AIAA 2011-3463
[11] Bityurin V A, Bocharov A N 2014 AIAA 2014-1033
[12] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927
[13] Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625
[14] Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.
[15] Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804
[16] Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274
[17] Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]
[18] L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]
[19] Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)
[20] Miller C G 1984 NASA-TP-2334
Catalog
Metrics
- Abstract views: 6652
- PDF Downloads: 254
- Cited By: 0