搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同织构CVD金刚石膜的Hall效应特性

苏青峰 刘长柱 王林军 夏义本

引用本文:
Citation:

不同织构CVD金刚石膜的Hall效应特性

苏青峰, 刘长柱, 王林军, 夏义本

Hall effect of different textured CVD diamond films

Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben
PDF
导出引用
  • 采用热丝化学气相沉积法在p型硅衬底上制备了不同织构的多晶金刚石膜,使用XRD表征了CVD金刚石膜的结构特征, 研究了退火后不同织构金刚石膜的电流特性, 使用Hall效应检测仪研究了金刚石膜的霍尔效应特性及随温度变化的规律, 结果表明所制备的金刚石膜是p型材料, 载流子浓度随着温度的降低而增加, 迁移率随着温度的降低而减小. 室温下[100]织构金刚石薄膜的载流子浓度和迁移率分别为4.3×104 cm-3和76.5 cm2/V·s.
    Due to its smoothest surface, fewer defects, and better crystal quality, [100] textured diamond film is well suited for the application of optoelectronic and microelectronic devices. Carrier concentration and mobility are very important parameters of semiconductor materials. In order to further broadening the application of diamond films in optoelectronics and microelectronics, it is necessary to made a research on Hall effect characteristics of [100] textured and [111] textured films. In this paper, different textured polycrystalline diamond films are deposited on silicon substrates by hot filament chemical vapor deposition (HFCVD) method under different conditions. Microstructures of diamond films are characterized by X-ray diffraction (XRD). High quality [100] textured and [111] textured diamond films are obtained. Dark current-voltage (I-V) characteristics of different-oriented films after annealing are investigated at room temperature. The carrier concentration and mobility of diamond films are measured by Hall effect test system as the temperature changing from 100 to 500 K. Results indicate that the textures of diamond films affect the value of carrier mobility:carrier concentration increases and mobility decreases with the decrease of temperature; and the deposited films are of p-type materials. The carrier concentration and mobility of polycrystalline [100]-textured diamond films at room temperature are 4.3×104 cm-3 and 76.5 cm2/V·s, respectively.
    • 基金项目: 国家自然科学基金(批准号:61176072)和上海市人才发展基金(批准号:201425)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176072), and the Shanghai Talent Development Fund, China (Grant No. 201425).
    [1]

    Zieliński A, Bogdanowicz R, Ryl J, Burczyk L, Darowicki K 2014 Appl. Phys. Lett. 105 131908

    [2]

    Chatterjee V, Harniman R, May P W, Barhai P K 2014 Appl. Phys. Lett. 104 171907

    [3]

    Zhuang C Q, Liu L 2015 Chin. Phys. B 24 018101

    [4]

    Zheng Y J, Huang G F, Li Z C, Zuo G H 2014 Chin. Phys. B 23 118102

    [5]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [6]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [7]

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102 (in Chinese) [王锐, 胡晓君 2014 63 148102]

    [8]

    Zhou Z X Jia X P, Li Y Yan B M, Wang F B Fang C Chen N Li Y D Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]

    [9]

    Su Q F, Liu J M, Wang L J, Shi W M, Xia Y B 2006 Acta Phys. Sin. 55 5145 (in Chinese) [苏青峰, 刘健敏, 王林军, 史伟民, 夏义本 2006 55 5145]

    [10]

    Xia Y B, Sekiguchi T, Zhang W J, Jiang X, Wu W H, Yao T 2000 J. Cryst. Growth 213 328

    [11]

    Tang C J, Fernandes A J S, Jiang X F, Pinto J L 2012 Diamond Relat. Mater. 24 93

    [12]

    Thanry M A P, Berini B, Stenger I, Chikoiolze E, Lusson A, Jomard F, Chevallier J, Barjon J 2012 Appl. Phys. Lett. 100 192109

    [13]

    Kato H, Yamasaki S, Okushi H 2005 Appl. Phys. Lett. 86 222111

    [14]

    Zhu L L 2015 Chin. Phys. B 24 016201

    [15]

    Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 017305

    [16]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chin. Phys. Lett. 31 027301

    [17]

    Williams O A, Curat S, Gerb J E, Gruen D M, Jackman R B 2004 Appl. Phys. Lett. 85 1680

    [18]

    Ri S G, Takeuchi D, Kato H, Ogura M, Makino T, Yamasaki S, Okushi H, Rezek B, Nebel C E 2005 Appl. Phys. Lett. 87 262107

    [19]

    Isberg J, Gabrysch M, Majdi S, Twitchen D J 2012 Appl. Phys. Lett. 100 172103

    [20]

    Majdi S, Kovi K K, Hammersberg J, Issberg J 2013 Appl. Phys. Lett. 102 152113

    [21]

    Zhang X X, Shi T S, Wang J X, Zhang X K 1995 J. Cryst. Growth 155 66

    [22]

    Williams O A, Jackman R B, Nebel C, Foord J S 2003 Semicond. Sci. Technol. 18 S77

    [23]

    Sauerer C, Ertl F, Nebel C E, Stutzmann M, Bergonzo P, Willianms O A, Jackman R A 2001 Phys. Stat. Sol. A 186 241

    [24]

    Ristein J 2000 Diamond Relat. Mater. 9 1129

    [25]

    Mott N F, Twose T D 1961 Adv. Phys. 10 107

    [26]

    Look D C, Molnar R J 1997 Appl. Phys. Lett. 70 3377

    [27]

    Williams O A, Jackman R B, Nebel C, Foord J S 2002 Diamond Relat. Mater. 11 396

    [28]

    Jiang N, Ito T 1999 J. Appl. Phys. 85 8267

    [29]

    Looi H J, Jackman R B, Foord J S 1998 Appl. Phys. Lett. 72 353

  • [1]

    Zieliński A, Bogdanowicz R, Ryl J, Burczyk L, Darowicki K 2014 Appl. Phys. Lett. 105 131908

    [2]

    Chatterjee V, Harniman R, May P W, Barhai P K 2014 Appl. Phys. Lett. 104 171907

    [3]

    Zhuang C Q, Liu L 2015 Chin. Phys. B 24 018101

    [4]

    Zheng Y J, Huang G F, Li Z C, Zuo G H 2014 Chin. Phys. B 23 118102

    [5]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [6]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [7]

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102 (in Chinese) [王锐, 胡晓君 2014 63 148102]

    [8]

    Zhou Z X Jia X P, Li Y Yan B M, Wang F B Fang C Chen N Li Y D Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]

    [9]

    Su Q F, Liu J M, Wang L J, Shi W M, Xia Y B 2006 Acta Phys. Sin. 55 5145 (in Chinese) [苏青峰, 刘健敏, 王林军, 史伟民, 夏义本 2006 55 5145]

    [10]

    Xia Y B, Sekiguchi T, Zhang W J, Jiang X, Wu W H, Yao T 2000 J. Cryst. Growth 213 328

    [11]

    Tang C J, Fernandes A J S, Jiang X F, Pinto J L 2012 Diamond Relat. Mater. 24 93

    [12]

    Thanry M A P, Berini B, Stenger I, Chikoiolze E, Lusson A, Jomard F, Chevallier J, Barjon J 2012 Appl. Phys. Lett. 100 192109

    [13]

    Kato H, Yamasaki S, Okushi H 2005 Appl. Phys. Lett. 86 222111

    [14]

    Zhu L L 2015 Chin. Phys. B 24 016201

    [15]

    Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 017305

    [16]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chin. Phys. Lett. 31 027301

    [17]

    Williams O A, Curat S, Gerb J E, Gruen D M, Jackman R B 2004 Appl. Phys. Lett. 85 1680

    [18]

    Ri S G, Takeuchi D, Kato H, Ogura M, Makino T, Yamasaki S, Okushi H, Rezek B, Nebel C E 2005 Appl. Phys. Lett. 87 262107

    [19]

    Isberg J, Gabrysch M, Majdi S, Twitchen D J 2012 Appl. Phys. Lett. 100 172103

    [20]

    Majdi S, Kovi K K, Hammersberg J, Issberg J 2013 Appl. Phys. Lett. 102 152113

    [21]

    Zhang X X, Shi T S, Wang J X, Zhang X K 1995 J. Cryst. Growth 155 66

    [22]

    Williams O A, Jackman R B, Nebel C, Foord J S 2003 Semicond. Sci. Technol. 18 S77

    [23]

    Sauerer C, Ertl F, Nebel C E, Stutzmann M, Bergonzo P, Willianms O A, Jackman R A 2001 Phys. Stat. Sol. A 186 241

    [24]

    Ristein J 2000 Diamond Relat. Mater. 9 1129

    [25]

    Mott N F, Twose T D 1961 Adv. Phys. 10 107

    [26]

    Look D C, Molnar R J 1997 Appl. Phys. Lett. 70 3377

    [27]

    Williams O A, Jackman R B, Nebel C, Foord J S 2002 Diamond Relat. Mater. 11 396

    [28]

    Jiang N, Ito T 1999 J. Appl. Phys. 85 8267

    [29]

    Looi H J, Jackman R B, Foord J S 1998 Appl. Phys. Lett. 72 353

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应.  , 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [3] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响.  , 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [6] 刘聪, 汪建华, 翁俊. 高质量高取向(100)面金刚石膜的可控性生长.  , 2015, 64(2): 028101. doi: 10.7498/aps.64.028101
    [7] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究.  , 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [8] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响.  , 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [9] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析.  , 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [10] 侯碧辉, 刘凤艳, 焦彬, 岳明. 纳米金属Tm的电子浓度研究.  , 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [11] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [12] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型.  , 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [13] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响.  , 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [14] 刘存业, 刘 畅. CVD金刚石膜的结构分析.  , 2003, 52(6): 1479-1483. doi: 10.7498/aps.52.1479
    [15] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究.  , 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [16] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [17] 王必本, 王万录, 廖克俊, 肖金龙, 方亮. 离子的轰击对Si衬底上金刚石核附着力的影响.  , 2001, 50(2): 251-255. doi: 10.7498/aps.50.251
    [18] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究.  , 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [19] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应.  , 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究.  , 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  6759
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-12
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map