Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spall behavior of copper under ultra-high strain rate loading

Xi Tao Fan Wei Chu Gen-Bai Shui Min He Wei-Hua Zhao Yong-Qiang Xin Jian-Ting Gu Yu-Qiu

Citation:

Spall behavior of copper under ultra-high strain rate loading

Xi Tao, Fan Wei, Chu Gen-Bai, Shui Min, He Wei-Hua, Zhao Yong-Qiang, Xin Jian-Ting, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spall behavior of copper at ultra-high strain rate is studied by molecular dynamics simulation combined with an experimental analysis of laser ablation of a bulk copper target by femtosecond laser pulses. In the molecular dynamics simulation, two-temperature model is used, shock wave and spallation characteristics of copper shock-loaded by femtosecond laser are analyzed in detail. It is concluded that the evolution of pressure indicates a triangular waveform of the shock wave, and the spall strength of copper is about 19 GPa at strain rates ranging from 109 s-1 to 1010 s-1, while higher pressure would melt the sample and the spall strength decreases to 14.89 GPa. Normally, the spallation is characterized by the sample free-surface undergoing alternately acceleration and deceleration, and the spallation mechanism could be explained by void nucleation, growth, coalescence that leads to the final fracture. An experiment is conducted to achieve high strain rate load on copper. The driving laser has a pulse width of 25 fs and central wavelength of 800 nm, the thickness values of the shocked copper foils are (5025) nm, fabricated by electron beam sputtering deposition onto 180 upm cover slip substrates. The driving laser beam with maximum intensity 5.51013 W/cm2, is focused on the front surface of the copper through the transparent substrate. Movements of the free rear surfaces of the copper foils are detected by chirped pulse spectral interferometry, and the theoretical time resolution is 1.3 ps. As a result, the free surface displacement and velocity evolution profile of the shocked area are obtained in a single measurement, and the results directly show that the maximum free surface velocity is 0.43 km/s and no alternately acceleration and deceleration appears. According to the shock wave relations, the maximum pressure near free-surface is 8.18 GPa. Meanwhile, derived from the velocity evolution profile, the strain rate is 7.3109 s-1. Combining with the above molecular dynamics simulation results, it is concluded that there is no spallation in the copper foil. Furthermore, we recover the sample targets and observe the microstructures by using scanning electron microscope. The copper foils are peeled off, but no spall scab is observed, indicating that the internal stress is between the copper spall strength and the bonding strength of copper foil with the transparent substrate. Ripple structure on copper surface demonstrates the femtosecond pulsed laser has ablated the copper film, and the propagation of the shock in fs regime is sensitive to microscopic defects.
      Corresponding author: Xin Jian-Ting, jane_xjt@126.com;yqgu@caep.ac.cn ; Gu Yu-Qiu, jane_xjt@126.com;yqgu@caep.ac.cn
    • Funds: Project supported by the Science and Technology on Plasma Physics Laboratory,China (Grant Nos.9140C680306150C68298,9140C680305140C68289).
    [1]

    Qian X S 1962 Notes on Physical Mechanics (Beijing:Science Press) p190 (in Chinese)[钱学森 1962 物理力学讲义 (北京:科学出版社) 第190页]

    [2]

    Deng X L 2006 Ph. D. Dissertation (Sichuan:Sichuan University) (in Chinese)[邓小良 2006 博士学位论文(四川:四川大学)]

    [3]

    Gray G T, Maudlin P J, Hull L M, Zuo Q K, Chen S R 2005 J. Fail. Anal. Prev. 5 3

    [4]

    Tan H 2007 Introduction to Experimenal Shock-Wave Phyiscs (Beijing:National Defense Industry Press) p194 (in Chinese)[谭华 2007 实验冲击波物理导引(北京:国防工业出版社) 第194页]

    [5]

    Gray G T, Bourne N T, Millett J C F, Lopez M F, Vecchio K S 2002 AIP Conf. Proc. 620 479

    [6]

    Pedrazas N A, Worthington D L, Dalton D A, Sherek P A, Steuck S P, Quevedo H J, Bernstein A C, Taleff E M, Ditmire T 2012 Mater. Sci. Eng. A 536 117

    [7]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, Rességuier T D, Combis P, Carion J B, Lescoute E 2010 EPJ Web Conf. 10 00014

    [8]

    Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg I B, Eliaz N, Eliezer D 1998 J. Appl. Phys. 83 8

    [9]

    Dalton D A, Brewer J, Bernstein A C, Grigsby W, Milathianaki D, Jackson E, Adams R, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E, Ditmire T 2007 AIP Conf. Proc. 955 501

    [10]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [11]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [12]

    Hixson R S, Gray G T, Rigg P A, Addessio L B, Yablinsky C A 2004 AIP Conf. Proc. 706 469

    [13]

    Thissell W R, Zurek A K, Macdougall D A, Miller D, Everett R, Geltmacher A, Brooks R, Tonks D 2002 AIP Conf. Proc. 620 475

    [14]

    Tamura H, Kohama T, Kondo K, Yoshida M 2001 J. Appl. Phys. 89 6

    [15]

    Cuq-Lelandais J P, Boustie M, Berthe L, Rességuier T D, Combis P, Colombier J P, Nivard M, Claverie J 2009 Phys. D:Appl. Phys. 42 065402

    [16]

    Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Agranat M B 2013 Quantum Elect. 43 3

    [17]

    Belak J 1998 J. Comput.:Aided Mater. 5 193

    [18]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [19]

    Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M 2006 Phys. Rev. B 74 144110

    [20]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [21]

    Durand O, Soulard L 2012 J. Appl. Phys. 111 044901

    [22]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modelling Simul. Mater. Sci. Eng. 21 055005

    [23]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [24]

    Corkum P B, Brunel F, Sherman N K, Rao T S 1988 Phys. Rev. Lett. 61 25

    [25]

    Zhigilei L V, Lin Z B, Ivanov D S 2009 J. Phys. Chem. C 113 11892

    [26]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 39 776

    [27]

    Chen A M, Gao X, Jiang Y F, Ding D J, Liu H, Jin M X 2009 Acta Phys. Sin. 59 10 (in Chinese)[陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星 2009 59 10]

    [28]

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 21 (in Chinese)[王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 62 21]

    [29]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [30]

    Li W X 2003 One-Dimension Nonsteady Flow and Shock Waves (Beijing:National Defense Industry Press) p42 (in Chinese)[李维新 2003 一维不定常流与冲击波] (北京:国防工业出版社) 第42页]

  • [1]

    Qian X S 1962 Notes on Physical Mechanics (Beijing:Science Press) p190 (in Chinese)[钱学森 1962 物理力学讲义 (北京:科学出版社) 第190页]

    [2]

    Deng X L 2006 Ph. D. Dissertation (Sichuan:Sichuan University) (in Chinese)[邓小良 2006 博士学位论文(四川:四川大学)]

    [3]

    Gray G T, Maudlin P J, Hull L M, Zuo Q K, Chen S R 2005 J. Fail. Anal. Prev. 5 3

    [4]

    Tan H 2007 Introduction to Experimenal Shock-Wave Phyiscs (Beijing:National Defense Industry Press) p194 (in Chinese)[谭华 2007 实验冲击波物理导引(北京:国防工业出版社) 第194页]

    [5]

    Gray G T, Bourne N T, Millett J C F, Lopez M F, Vecchio K S 2002 AIP Conf. Proc. 620 479

    [6]

    Pedrazas N A, Worthington D L, Dalton D A, Sherek P A, Steuck S P, Quevedo H J, Bernstein A C, Taleff E M, Ditmire T 2012 Mater. Sci. Eng. A 536 117

    [7]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, Rességuier T D, Combis P, Carion J B, Lescoute E 2010 EPJ Web Conf. 10 00014

    [8]

    Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg I B, Eliaz N, Eliezer D 1998 J. Appl. Phys. 83 8

    [9]

    Dalton D A, Brewer J, Bernstein A C, Grigsby W, Milathianaki D, Jackson E, Adams R, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E, Ditmire T 2007 AIP Conf. Proc. 955 501

    [10]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [11]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [12]

    Hixson R S, Gray G T, Rigg P A, Addessio L B, Yablinsky C A 2004 AIP Conf. Proc. 706 469

    [13]

    Thissell W R, Zurek A K, Macdougall D A, Miller D, Everett R, Geltmacher A, Brooks R, Tonks D 2002 AIP Conf. Proc. 620 475

    [14]

    Tamura H, Kohama T, Kondo K, Yoshida M 2001 J. Appl. Phys. 89 6

    [15]

    Cuq-Lelandais J P, Boustie M, Berthe L, Rességuier T D, Combis P, Colombier J P, Nivard M, Claverie J 2009 Phys. D:Appl. Phys. 42 065402

    [16]

    Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Agranat M B 2013 Quantum Elect. 43 3

    [17]

    Belak J 1998 J. Comput.:Aided Mater. 5 193

    [18]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [19]

    Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M 2006 Phys. Rev. B 74 144110

    [20]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [21]

    Durand O, Soulard L 2012 J. Appl. Phys. 111 044901

    [22]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modelling Simul. Mater. Sci. Eng. 21 055005

    [23]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [24]

    Corkum P B, Brunel F, Sherman N K, Rao T S 1988 Phys. Rev. Lett. 61 25

    [25]

    Zhigilei L V, Lin Z B, Ivanov D S 2009 J. Phys. Chem. C 113 11892

    [26]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 39 776

    [27]

    Chen A M, Gao X, Jiang Y F, Ding D J, Liu H, Jin M X 2009 Acta Phys. Sin. 59 10 (in Chinese)[陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星 2009 59 10]

    [28]

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 21 (in Chinese)[王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 62 21]

    [29]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [30]

    Li W X 2003 One-Dimension Nonsteady Flow and Shock Waves (Beijing:National Defense Industry Press) p42 (in Chinese)[李维新 2003 一维不定常流与冲击波] (北京:国防工业出版社) 第42页]

  • [1] Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia. Law and mechanism of impact velocity on spalling and fracture behavior of single crystal nickel. Acta Physica Sinica, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [2] Yuan Yong-Kai, Chen Qian, Gao Ting-Hong, Liang Yong-Chao, Xie Quan, Tian Ze-An, Zheng Quan, Lu Fei. Molecular dynamics simulations of GaAs crystal growth under different strains. Acta Physica Sinica, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [3] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [5] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [7] Fan Wei, Zhu Bin, Xi Tao, Li Gang, Lu Feng, Wu Yu-Chi, Han Dan, Gu Yu-Qiu. Experiment research on dynamic response of copper film at high strain rate by chirped pulse spectral interferometry. Acta Physica Sinica, 2016, 65(15): 150602. doi: 10.7498/aps.65.150602
    [8] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [9] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Discussion on the physical meaning of free surface velocity curve in ductile spallation. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [10] Fan Qian, Xu Jian-Gang, Song Hai-Yang, Zhang Yun-Guang. Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires. Acta Physica Sinica, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [11] Wang Yu-Zhen, Ma Ying, Zhou Yi-Chun. Molecular dynamics study of epitaxial compressive strain influence on the radiation resistance of BaTiO3 ferroelectrics. Acta Physica Sinica, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [12] Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan. Rate-dependent characteristics of copper under plate impact. Acta Physica Sinica, 2014, 63(19): 196202. doi: 10.7498/aps.63.196202
    [13] Zhang Feng-Guo, Zhou Hong-Qiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall. Acta Physica Sinica, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [14] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] Chen Yong-Tao, Tang Xiao-Jun, Li Qing-Zhong. Phase transition and influence of phase transitionon spall in α phase Fe-based alloy. Acta Physica Sinica, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [16] Wang Yong-Gang, Hu Jian-Dong, Qi Mei-Lan, He Hong-Liang. Simulation of incipient spallation experiments of high purity aluminum based on a single void growth model. Acta Physica Sinica, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [17] Quan Wei-Long, Li Hong-Xuan, Ji Li, Zhao Fei, Du Wen, Zhou Hui-Di, Chen Jian-Min. Molecular dynamical simulation on the mechanical property of hydrogenated diamond-like carbon films. Acta Physica Sinica, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [18] Dong Jun, Peng Han-Sheng, Wei Xiao-Feng, Hu Dong-Xia, Zhou Wei, Zhao Jun-Pu, Zhang Ying, Cheng Wen-Yong, Liu Lan-Qin. Analysis for phase shifts transformation of chirped pulse from frequency-domain to time-domain based on Fourier transform. Acta Physica Sinica, 2009, 58(1): 315-320. doi: 10.7498/aps.58.315
    [19] Wang Yong-Gang, He Hong-Liang, Boustie Michel, Sekine Toshimori. Experimental studies of spallation in nanocrystalline copper film by laser irradiation. Acta Physica Sinica, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [20] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
Metrics
  • Abstract views:  7418
  • PDF Downloads:  495
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2016
  • Accepted Date:  19 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map