搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究

樊倩 徐建刚 宋海洋 张云光

引用本文:
Citation:

层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究

樊倩, 徐建刚, 宋海洋, 张云光

Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires

Fan Qian, Xu Jian-Gang, Song Hai-Yang, Zhang Yun-Guang
PDF
导出引用
  • 采用分子动力学模拟方法, 研究了层厚度和应变率对铜-金多层复合纳米线在均匀拉伸载荷下力学性能的影响, 并分析了铜-金位错成核机理. 研究结果表明, 随着铜-金层厚度的增加, 复合材料的屈服强度也随之增大; 高应变率时复合材料的力学性能比低应变率时要强, 低应变率的塑性形变主要是位错运动和孪晶形变, 而高应变率主要以单原子运动为主, 表现出了非晶化. 该研究对制备高性能的多层复合材料提供了一定的理论依据.
    Effects of individual layer thickness and strain rate on the mechanical behavior of copper-gold multilayer nanowires as well as the dislocation nucleation mechanism under a uniform tensile loading are investigated using molecular dynamics method. Simulations indicate that the highest yield strength increases with the increase of the individual layer thickness. Furthermore, the result also shows that the mechanical properties in the tensile process at different strain rates are dramatically different from each other, where the dislocation motion and twinning deformation are at a lower strain rate, while the individual atoms are at a higher strain rate for leading to amorphization. The general conclusions derived from this work can provide a guideline for the design of high performance multilayer composite materials.
    • 基金项目: 国家自然科学基金(批准号: 10902083)、教育部新世纪优秀人才支持计划(批准号: NCET-12-1046)、陕西省青年科技新星支持计划(批准号: 2012KJXX-39)和陕西省自然科学基础研究计划项目(批准号: 2014JQ1036)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10902083), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-1046), the New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JQ1036).
    [1]

    Xu S, Guo Y F 2013 Acta Phys. Sin. 62 196201 (in Chinese) [徐爽, 郭雅芳 2013 62 196201]

    [2]

    Zhang J H, Li M, Gu F, Liu Q Q 2012 Chin. Phys. B 21 016203

    [3]

    Gu F, Zhang J H, Xu L H, Liu Q Q, Li M 2011 Chin. Phys. Lett. 28 106102

    [4]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [5]

    Li C, Xu J, Li W, Jiang X F, Sun S H, Xu L, Chen K J 2013 Chin. Phys. B 22 107201

    [6]

    Wang Z G, Huang R, Wen Y H 2012 Acta Phys. Sin. 61 166102 (in Chinese) [汪志刚, 黄娆, 文玉华 2012 61 166102]

    [7]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [8]

    An M R, Song H Y 2013 Sci. China Phys. Mech. Astron. 56 1938

    [9]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [10]

    Song H Y, Li Y L, An M R 2014 Comput. Mater. Sci. 84 40

    [11]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [12]

    Whang C, Song H Y, An M R 2014 Acta Phys. Sin. 63 046201 (in Chinese) [王琛, 宋海洋, 安敏荣 2014 63 046201]

    [13]

    Liu Y, Bufford D, Wang H, Sun C, Zhang X 2011 Acta. Mater. 59 1924

    [14]

    Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J 2010 varPhilos. Mag. Lett. 90 413

    [15]

    Abdolrahim N, Zbib H M, Bahr D F 2014 Int. J. PLASTICITY 52 33

    [16]

    Abdolrahim N, Mastorakos I N, Shao S, Bahr D F, Zbib H M 2014 Comput. Mater. Sci 86 118

    [17]

    Zhang R F, Germann T C, Wang J, Liu X Y, Beyerlein I J 2013 Scripta Mater 68 114

    [18]

    Shao S, Zbib H M, Mastorakos I N, Bahr D F 2014 Comput. Mater. Sci 82 435

    [19]

    Mastorakos I N, Abdolrahim N, Zbib H M 2010 Int. J. Mech. Sci 52 295

    [20]

    Yuan F P, Wu X L 2012 J.Appl.Phys. 111 124313

    [21]

    Verdier M, Huang H, Spaepen F, Embury J D, Kung H 2006 Philos. Mag. 86 5009

    [22]

    Sangid M D, Ezaz T, Sehitoglu H, Robertson I M 2011 Acta. Mater. 59 283

    [23]

    Zbib H M, Overman C T, Akasheh F, Bahr D 2011 Int. J. PLASTICITY 27 1618

    [24]

    Abdolrahim N, Mastorakos I N, Zbib H M 2010 Phys. Rev. B 81 054117

    [25]

    Wang J, Misra A 2014 Curr. Opin. Solid. St. M. 18 19

    [26]

    Kramer D E, Foecke T 2002 Philos. Mag. A 82 3375

    [27]

    Yan J W, Zhang G P, Zhu X F, Liu H S, Yan C 2013 Philos. Mag 93 434

    [28]

    Schweitz K O, Chevallier J, Bottiger J 2001 Philos. Mag. A 81 2021

    [29]

    Beyerlein I J, Wang J, Zhang R F 2013 Acta. Mater. 61 7488

    [30]

    Wang T, Lu Z X, Yang Z Y 2011 Chin. J. Comput. Mech. 28 147 (in Chinese) [王涛, 卢子兴, 杨振宇 2011 计算力学学报 28 147]

    [31]

    Chen S D, Zhou Y K, Soh A K 2012 Comput. Mater. Sci 61 239

    [32]

    Lin S J, Wu C D, Fang T H, Kuo L M 2012 Comput. Mater. Sci 59 114

    [33]

    Li Y P, Zhu X F, Tan J, Wu B, Zhang G P 2009 Philos. Mag. Lett. 89 66

    [34]

    Li Y P, Zhu X F, Zhang G P, Tan J, Wang W, Wu B 2010 Philos. Mag. 90 3049

    [35]

    Crone J C, Kbap J, Chung P W, Rice B M 2011 Appl. Phys. Lett. 98 141910

    [36]

    Hockney R W 1970 Methods Comput. Phys. 9 136

    [37]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Long A K P, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta. Mater. 49 4005

    [38]

    Wadley H N G, Zhou X, Johnson R A, Neurock M 2001 Prog. Mater. Sci. 46 329

    [39]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [40]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [41]

    Cheung K S Yip S 1991 J. Appl. Phys. 70 5688

    [42]

    Diao J, Gall K, Dunn M L, Zimmerman J A 2006 Acta. Mater. 54 643

    [43]

    Ma F, Ma S L, Xu K W, Chu P K 2007 Nanotechnology 18 455702

  • [1]

    Xu S, Guo Y F 2013 Acta Phys. Sin. 62 196201 (in Chinese) [徐爽, 郭雅芳 2013 62 196201]

    [2]

    Zhang J H, Li M, Gu F, Liu Q Q 2012 Chin. Phys. B 21 016203

    [3]

    Gu F, Zhang J H, Xu L H, Liu Q Q, Li M 2011 Chin. Phys. Lett. 28 106102

    [4]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [5]

    Li C, Xu J, Li W, Jiang X F, Sun S H, Xu L, Chen K J 2013 Chin. Phys. B 22 107201

    [6]

    Wang Z G, Huang R, Wen Y H 2012 Acta Phys. Sin. 61 166102 (in Chinese) [汪志刚, 黄娆, 文玉华 2012 61 166102]

    [7]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [8]

    An M R, Song H Y 2013 Sci. China Phys. Mech. Astron. 56 1938

    [9]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [10]

    Song H Y, Li Y L, An M R 2014 Comput. Mater. Sci. 84 40

    [11]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [12]

    Whang C, Song H Y, An M R 2014 Acta Phys. Sin. 63 046201 (in Chinese) [王琛, 宋海洋, 安敏荣 2014 63 046201]

    [13]

    Liu Y, Bufford D, Wang H, Sun C, Zhang X 2011 Acta. Mater. 59 1924

    [14]

    Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J 2010 varPhilos. Mag. Lett. 90 413

    [15]

    Abdolrahim N, Zbib H M, Bahr D F 2014 Int. J. PLASTICITY 52 33

    [16]

    Abdolrahim N, Mastorakos I N, Shao S, Bahr D F, Zbib H M 2014 Comput. Mater. Sci 86 118

    [17]

    Zhang R F, Germann T C, Wang J, Liu X Y, Beyerlein I J 2013 Scripta Mater 68 114

    [18]

    Shao S, Zbib H M, Mastorakos I N, Bahr D F 2014 Comput. Mater. Sci 82 435

    [19]

    Mastorakos I N, Abdolrahim N, Zbib H M 2010 Int. J. Mech. Sci 52 295

    [20]

    Yuan F P, Wu X L 2012 J.Appl.Phys. 111 124313

    [21]

    Verdier M, Huang H, Spaepen F, Embury J D, Kung H 2006 Philos. Mag. 86 5009

    [22]

    Sangid M D, Ezaz T, Sehitoglu H, Robertson I M 2011 Acta. Mater. 59 283

    [23]

    Zbib H M, Overman C T, Akasheh F, Bahr D 2011 Int. J. PLASTICITY 27 1618

    [24]

    Abdolrahim N, Mastorakos I N, Zbib H M 2010 Phys. Rev. B 81 054117

    [25]

    Wang J, Misra A 2014 Curr. Opin. Solid. St. M. 18 19

    [26]

    Kramer D E, Foecke T 2002 Philos. Mag. A 82 3375

    [27]

    Yan J W, Zhang G P, Zhu X F, Liu H S, Yan C 2013 Philos. Mag 93 434

    [28]

    Schweitz K O, Chevallier J, Bottiger J 2001 Philos. Mag. A 81 2021

    [29]

    Beyerlein I J, Wang J, Zhang R F 2013 Acta. Mater. 61 7488

    [30]

    Wang T, Lu Z X, Yang Z Y 2011 Chin. J. Comput. Mech. 28 147 (in Chinese) [王涛, 卢子兴, 杨振宇 2011 计算力学学报 28 147]

    [31]

    Chen S D, Zhou Y K, Soh A K 2012 Comput. Mater. Sci 61 239

    [32]

    Lin S J, Wu C D, Fang T H, Kuo L M 2012 Comput. Mater. Sci 59 114

    [33]

    Li Y P, Zhu X F, Tan J, Wu B, Zhang G P 2009 Philos. Mag. Lett. 89 66

    [34]

    Li Y P, Zhu X F, Zhang G P, Tan J, Wang W, Wu B 2010 Philos. Mag. 90 3049

    [35]

    Crone J C, Kbap J, Chung P W, Rice B M 2011 Appl. Phys. Lett. 98 141910

    [36]

    Hockney R W 1970 Methods Comput. Phys. 9 136

    [37]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Long A K P, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta. Mater. 49 4005

    [38]

    Wadley H N G, Zhou X, Johnson R A, Neurock M 2001 Prog. Mater. Sci. 46 329

    [39]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [40]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [41]

    Cheung K S Yip S 1991 J. Appl. Phys. 70 5688

    [42]

    Diao J, Gall K, Dunn M L, Zimmerman J A 2006 Acta. Mater. 54 643

    [43]

    Ma F, Ma S L, Xu K W, Chu P K 2007 Nanotechnology 18 455702

  • [1] 张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪. 纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟.  , 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [8] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟.  , 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [9] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟.  , 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [10] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究.  , 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟.  , 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [14] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究.  , 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [17] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响.  , 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [19] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响.  , 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能.  , 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  6318
  • PDF下载量:  4874
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-05
  • 修回日期:  2014-09-10
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map