Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A jet acceleration mechanism for the black hole disk system

Xu Jia-Di Jiang Zhi-Xiong Gong Xiao-Long

Citation:

A jet acceleration mechanism for the black hole disk system

Xu Jia-Di, Jiang Zhi-Xiong, Gong Xiao-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A jet acceleration mechanism of extracting energy from the disk-corona surrounding a rotating black hole is proposed. In this disk-corona scenario, the central object is a rotating Kerr black hole, and a geometrically thin and optically thick disk is sandwiched by a slab corona. The large-scaled magnetic field plays an important role in jet acceleration mechanism. So we obtain the value of the magnetic field in such a disk-corona system by solving the disk dynamic equations in the context of general relativity. The results show that the value of magnetic field decreases with the increase of disk radius, while increases with the increase of black hole spin parameter a*. Then the analytical expression of the jet power is derived based on the electronic circuit theory of the magnetosphere. It is found that the jet power increases obviously with increasing black hole spin parameter a* and magnetic stress parameter . Furthermore, the calculation results also show that the jet power is mainly from the inner region of the disk-corona system, which is consistent with the observations of the jet. Finally, a sample composed of the 23 Fermi blazars with high jet power is used to explore our jet production mechanism. The conclusion suggests that our jet acceleration mechanism can simulate all sources with high power jet. By comparing with the observational data, we find that these high jet power sources cannot be explained by the Blandford-Znajek mechanism, even if the central object is extreme Kerr black hole.
      Corresponding author: Gong Xiao-Long, xlgong@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1431101, 11403003) and the National Basic Research Program of China (Grant No. 2012CB821804).
    [1]

    Livio M, Ogilvie G I, Pringle J E 1999 Astrophys. J. 512 100

    [2]

    Meier D L 1999 Astrophys. J. 522 753

    [3]

    Lovelace R V E 1976 Nature 262 649

    [4]

    Blandford R D, Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433

    [5]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883

    [6]

    Proga D, Stone J M, Drew J E 1998 Mon. Not. R. Astron. Soc. 295 595

    [7]

    Meier D L 2001 Astrophys. J. 548 L9

    [8]

    Macdonald D, Thorne K S 1982 Mon. Not. R. Astron. Soc. 198 345

    [9]

    Romanova M M, Ustyugova G V, Koldoba A V 1998 Astrophys. J. 500 703

    [10]

    Tout C A, Pringle J E 1996 Mon. Not. R. Astron. Soc. 281 219

    [11]

    Narayan R, Yi I 1995 Astrophys. J. 444 231

    [12]

    Narayan R, Yi I 1995 Astrophys. J. 452 710

    [13]

    Merloni A, Fabian A C 2002 Mon. Not. R. Astron. Soc. 332 165

    [14]

    Cao X W 2003 Astrophys. J. 599 147

    [15]

    Cao X W, Rawlings S 2004 Mon. Not. R. Astron. Soc. 349 1419

    [16]

    Cao X W 2004 Astrophys. J. 613 716

    [17]

    Willott C J, Rawlings S, Blundell K M, Lacy M 1999 Mon. Not. R. Astron. Soc. 309 1017

    [18]

    Allen S W, Dunn R J H, Fabian A C, Taylor, G B, Reynolds C S 2006 Mon. Not. R. Astron. Soc. 372 21

    [19]

    McNamara B, Rohanizadegan M, Nulsen P 2011 Astrophys. J. 727 39

    [20]

    Zhang J, Sun X N, Liang E W, Lu R J, Lu Y, Zhang S N 2014 Astrophys. J. 788 104

    [21]

    Ghisellini G, Tavecchio F, Chirlanda G 2009 Mon. Not. R. Astron. Soc. 399 2041

    [22]

    Ghisellini G, Tavecchio F, Foschini L, Chirlanda G, Maraschi L, Celotti A 2010 Mon. Not. R. Astron. Soc. 402 497

    [23]

    Gong X L, Li L X, Ma R Y 2012 Mon. Not. R. Astron. Soc. 420 1415

    [24]

    Gong X L, Li L X 2012 Sci. Chin. Phys. Mech. Astron. 55 880

    [25]

    Cao X W 2009 Mon. Not. R. Astron. Soc. 394 207

    [26]

    Novikov I D, Thorne K S 1973 Astrophysics of Black Holes (New York:Gordon and Breach)

    [27]

    Page D N, Thorne K S 1974 Astrophys. J. 191 499

    [28]

    Agol E, Krolik J H 2000 Astrophys. J. 528 161

    [29]

    Zdziarski A A, Lubinski P, Smith D A 1999 Mon. Not. R. Astron. Soc. 303 L11

    [30]

    Gong X L, Wang D X, Ye Y C 2004 Chin. Phys. Lett. 21 1861

    [31]

    Gong X L, Wang D X 2005 Chin. Phys. Lett. 22 1293

    [32]

    Gong X L, Jiang Z X 2014 Chin. Phys. Lett. 31 089801

    [33]

    Thorne K S, Price R H, Macdonald D A 1986 Black Holes:the Membrane Paradigm (New Haven:Yale University Press)

    [34]

    Biretta J A, Junor W, Livio M 2002 New Astron. Rev. 46 239

    [35]

    Moderski R, Sikora M, Lasota J P 1997 On Black Hole Spins and Dichotomy of Quasars (Krakow:Jagiellonian University Press)

    [36]

    Merloni A, Fabian A C 2001 Mon. Not. R. Astron. Soc. 328 958

  • [1]

    Livio M, Ogilvie G I, Pringle J E 1999 Astrophys. J. 512 100

    [2]

    Meier D L 1999 Astrophys. J. 522 753

    [3]

    Lovelace R V E 1976 Nature 262 649

    [4]

    Blandford R D, Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433

    [5]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883

    [6]

    Proga D, Stone J M, Drew J E 1998 Mon. Not. R. Astron. Soc. 295 595

    [7]

    Meier D L 2001 Astrophys. J. 548 L9

    [8]

    Macdonald D, Thorne K S 1982 Mon. Not. R. Astron. Soc. 198 345

    [9]

    Romanova M M, Ustyugova G V, Koldoba A V 1998 Astrophys. J. 500 703

    [10]

    Tout C A, Pringle J E 1996 Mon. Not. R. Astron. Soc. 281 219

    [11]

    Narayan R, Yi I 1995 Astrophys. J. 444 231

    [12]

    Narayan R, Yi I 1995 Astrophys. J. 452 710

    [13]

    Merloni A, Fabian A C 2002 Mon. Not. R. Astron. Soc. 332 165

    [14]

    Cao X W 2003 Astrophys. J. 599 147

    [15]

    Cao X W, Rawlings S 2004 Mon. Not. R. Astron. Soc. 349 1419

    [16]

    Cao X W 2004 Astrophys. J. 613 716

    [17]

    Willott C J, Rawlings S, Blundell K M, Lacy M 1999 Mon. Not. R. Astron. Soc. 309 1017

    [18]

    Allen S W, Dunn R J H, Fabian A C, Taylor, G B, Reynolds C S 2006 Mon. Not. R. Astron. Soc. 372 21

    [19]

    McNamara B, Rohanizadegan M, Nulsen P 2011 Astrophys. J. 727 39

    [20]

    Zhang J, Sun X N, Liang E W, Lu R J, Lu Y, Zhang S N 2014 Astrophys. J. 788 104

    [21]

    Ghisellini G, Tavecchio F, Chirlanda G 2009 Mon. Not. R. Astron. Soc. 399 2041

    [22]

    Ghisellini G, Tavecchio F, Foschini L, Chirlanda G, Maraschi L, Celotti A 2010 Mon. Not. R. Astron. Soc. 402 497

    [23]

    Gong X L, Li L X, Ma R Y 2012 Mon. Not. R. Astron. Soc. 420 1415

    [24]

    Gong X L, Li L X 2012 Sci. Chin. Phys. Mech. Astron. 55 880

    [25]

    Cao X W 2009 Mon. Not. R. Astron. Soc. 394 207

    [26]

    Novikov I D, Thorne K S 1973 Astrophysics of Black Holes (New York:Gordon and Breach)

    [27]

    Page D N, Thorne K S 1974 Astrophys. J. 191 499

    [28]

    Agol E, Krolik J H 2000 Astrophys. J. 528 161

    [29]

    Zdziarski A A, Lubinski P, Smith D A 1999 Mon. Not. R. Astron. Soc. 303 L11

    [30]

    Gong X L, Wang D X, Ye Y C 2004 Chin. Phys. Lett. 21 1861

    [31]

    Gong X L, Wang D X 2005 Chin. Phys. Lett. 22 1293

    [32]

    Gong X L, Jiang Z X 2014 Chin. Phys. Lett. 31 089801

    [33]

    Thorne K S, Price R H, Macdonald D A 1986 Black Holes:the Membrane Paradigm (New Haven:Yale University Press)

    [34]

    Biretta J A, Junor W, Livio M 2002 New Astron. Rev. 46 239

    [35]

    Moderski R, Sikora M, Lasota J P 1997 On Black Hole Spins and Dichotomy of Quasars (Krakow:Jagiellonian University Press)

    [36]

    Merloni A, Fabian A C 2001 Mon. Not. R. Astron. Soc. 328 958

  • [1] Zhang Da-Jun. Bilinearization-reduction approach to integrable systems. Acta Physica Sinica, 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [2] Sun Wei, Lü Chong, Lei Zhu, Wang Zhao, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets. Acta Physica Sinica, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [3] Zhang Da-Jun. Discrete integrable systems: Multidimensional consistency. Acta Physica Sinica, 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [4] Zhou Shi-Hao, Fang Xin-Yu, Li Meng-Meng, Yu Ye-Feng, Chen Ru-Shan. S/X dual-band real-time modulated frequency selective surface based absorber. Acta Physica Sinica, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [5] Wei Yi-Huan. Thermodynamic properties and matter accretion properties of Kiselev black hole. Acta Physica Sinica, 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [6] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [7] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [8] Ou Jian-Wen, Zheng Yong-Gang, Zhang Xiong. Research on the optical variability of oscillating disk. Acta Physica Sinica, 2014, 63(23): 239801. doi: 10.7498/aps.63.239801
    [9] Zhao Tian, Chen Qun. Macroscopic physical meaning of entransy and its application. Acta Physica Sinica, 2013, 62(23): 234401. doi: 10.7498/aps.62.234401
    [10] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Entransy dissiaption minimization for isothermal throttling process. Acta Physica Sinica, 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [11] Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [12] Cheng Xue-Tao, Xu Xiang-Hua, Liang Xin-Gang. Principles of potential entransy in generalized flow. Acta Physica Sinica, 2011, 60(11): 118103. doi: 10.7498/aps.60.118103
    [13] Cheng Xue-Tao, Liang Xin-Gang, Xu Xiang-Hua. Microscopic expression of entransy. Acta Physica Sinica, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [14] Cheng Xue-Tao, Dong Yuan, Liang Xin-Gang. Potential entransy and potential entransy decrease principle. Acta Physica Sinica, 2011, 60(11): 114402. doi: 10.7498/aps.60.114402
    [15] He Yan-Fei, Gong Rong-Zhou, Wang Xian, Zhao Qiang. Study on equivalent electromagnetic parameters and absorbing properties of honeycomb-structured absorbing materials. Acta Physica Sinica, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [16] Wang Wei, Zhang Jie, Zhao Gang. Simulation of the effects of X-ray emission from accretion disks on the interstellar materials. Acta Physica Sinica, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
    [17] RUAN HANG-YU. STUDY OF SOLITONS INTERACTION IN INTEGRABLE MODELS. Acta Physica Sinica, 2001, 50(3): 369-376. doi: 10.7498/aps.50.369
    [18] YANG XIANG-LIN, CHEN JIAN. LENGTH-BIT-RATE PRODUCT LIMIT DUE TO GAIN NOISE IN OPTICAL SOLITON COMMUNICATION SYSTEMS. Acta Physica Sinica, 1993, 42(1): 51-57. doi: 10.7498/aps.42.51
    [19] GAO FEI, ZHANG HONG-TU. PILE-UP OF DISLOCATION WHILE EXISTING INHOMOGENEITY. Acta Physica Sinica, 1988, 37(8): 1315-1325. doi: 10.7498/aps.37.1315
    [20] FU GUANG-SHENG, HAN LI, LI XIAO-WEI, ZHANG LIAN-SHUI, DONG LI-FANG, LU FU-RUN, XUE CHUN-YIN. SILICON FILM DEPOSITED BY LASER-PLASMA. Acta Physica Sinica, 1987, 36(3): 293-300. doi: 10.7498/aps.36.293
Metrics
  • Abstract views:  6534
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2016
  • Accepted Date:  25 September 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map