搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义流动中的积原理

程雪涛 徐向华 梁新刚

引用本文:
Citation:

广义流动中的积原理

程雪涛, 徐向华, 梁新刚

Principles of potential entransy in generalized flow

Cheng Xue-Tao, Xu Xiang-Hua, Liang Xin-Gang
PDF
导出引用
  • 自然界发生的热量传递、分子扩散、导电等现象具有一定的相似性,它们均可被称为广义流动.文章基于这种相似性,对过增元等针对传热过程提出的(火积)理论进行了推广,定义了积、积流、积耗散等概念.针对只有一种广义流动和存在两种广义流动的系统,指出了在该类系统中可以发展积原理的条件,并在满足相应条件的系统中得到了积损失极小值原理、积耗散极值原理和最小广义流阻原理.
    Some natural phenomena, such as heat transfer, molecular diffusion and electricity conduction, are very similar to each other to some extent. They all could be treated as generalized flows. Based on this kind of similarity, in this paper we generalize the theory of entransy, and define the concepts of potential entransy, potential entransy flux, and potential entransy dissipation. In the system where there is only one kind of generalized flow or two kinds of generalized flows, the conditions under which we can develop the principles of potential entransy are introduced. Furthermore, the minimum principle of potential entransy loss, the extremum principle of potential entransy dissipation and the generalized minimum flow resistance principle are developed and discussed.
    • 基金项目: 清华大学自主科研计划和国家自然科学基金(批准号:51106082)资助的课题.
    [1]

    Onsager L 1931 Phys. Rev. 37 405

    [2]
    [3]

    Onsager L 1931 Phys. Rev. 38 2265

    [4]

    Radcenco V 1994 Generalized Thermodynamics (Bucharest: Editura Techica)

    [5]
    [6]

    Chen L, Bi Y, Wu C 1999 J. Phys. D: Appl. Phys. 32 1346

    [7]
    [8]

    Chen L, Wu C, Sun F 1999 J. Non-Equilibrium Thermod. 24 327

    [9]
    [10]
    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Trans. 50 2545

    [12]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [13]
    [14]

    Cheng X G, Li Z X, Guo Z Y 2003 J. Eng. Thermophy. 24 94 (in Chinese) [程新广、李志信、过增元 2003 工程热 24 94]

    [15]
    [16]
    [17]

    Zhu H Y, Chen Z J, Guo Z Y 2007 Prog. Nat. Sci. 17 1692 (in Chinese) [朱宏晔、陈泽敬、过增元 2007 自然科学进展 17 1692]

    [18]

    Chen L G, Wei S H, Sun F R 2008 J. Phys. D: Appl. Phys. 41 195506

    [19]
    [20]

    Chen L G, Wei S H, Sun F R 2009 J. Appl. Phys. 105 094906

    [21]
    [22]
    [23]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China E 52 3504

    [24]

    Wei S H, Chen L G, Sun F R 2009 Sci. China E 52 2981

    [25]
    [26]
    [27]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China E 52 2937

    [28]
    [29]

    Xiao Q H, Chen L G, Sun F R 2010 Chin. Sci. Bull. 55 3753

    [30]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [31]
    [32]

    Wu J, Cheng X G, Meng J A, Guo Z Y 2006 J. Eng. Thermophy. 27 100 (in Chinese) [吴 晶、程新广、孟继安、过增元 2006 工程热 27 100]

    [33]
    [34]
    [35]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [36]
    [37]

    Xiao Q H, Chen L G, Sun F R 2010 Sci. China E 55 2427

    [38]

    Wu J, Liang X G 2008 Sci. China E 51 1306

    [39]
    [40]
    [41]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [42]
    [43]

    Liu X B, Meng J A, Guo Z Y 2008 Prog. Nat. Sci. 18 1186

    [44]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌、过增元 2009 58 4766]

    [45]
    [46]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [47]
    [48]
    [49]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [50]
    [51]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [52]
    [53]

    Xia S J, Chen L G, Sun F R 2010 Sci. China E 53 960

    [54]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2004 Acta Phys. Sin. 53 2796 (in Chinese) [谢永军、石勤伟、王晓平、朱平平、杨海洋、张兴元 2004 53 2796]

    [55]
    [56]
    [57]

    Huang X L, Cui S Z, Ning X B, Bian C H 2009 Acta Phys. Sin. 58 8160 (in Chinese) [黄晓林、崔胜忠、宁新宝、卞春华 2009 58 8160]

    [58]

    Zhao R, Zhang L C, Zhang S L 2007 Acta Phys. Sin. 56 3719 (in Chinese) [赵 仁、张丽春、张胜利 2007 56 3719]

    [59]
    [60]
    [61]

    Zhang C L, Hu S Q, Li H F, Zhao R 2008 Acta Phys. Sin. 57 3719 (in Chinese) [张丽春、胡双启、李怀繁、赵 仁 2008 57 3328]

    [62]

    Zeng X X 2010 Acta Phys. Sin. 59 92 (in Chinese) [曾晓雄 2010 59 92]

    [63]
    [64]

    Jin N D, Dong F, Zhao S 2007 Acta Phys. Sin. 56 720 (in Chinese) [金宁德、董 芳、赵 舒 2007 56 720]

    [65]
    [66]
    [67]

    Guo Y F, Xu W, Li D X, Wang L 2010 Acta Phys. Sin. 59 2235 (in Chinese) [郭永峰、徐 伟、李东喜、王 亮 2010 59 2235]

    [68]
    [69]

    Wang Q G, Zhang Z P 2008 Acta Phys. Sin. 57 1976 (in Chinese) [王启光、张增平2008 57 1976]

    [70]

    Bejan A 1979 ASME J. Heat Transfer 101 718

    [71]
    [72]
    [73]

    Poulikakos D, Bejan A 1982 ASME J. Heat Transfer 104 616

    [74]
    [75]

    Erek A, Dincer I 2008 Int. J. Thermal. Sci. 47 1077

    [76]

    Bejan A 1982 Adv. Heat Transfer 15 1

    [77]
    [78]
    [79]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [80]
    [81]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 222(in Chinese)[程雪涛、梁新刚、过增元 2011 科学通报 56 222]

    [82]
    [83]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛、梁新刚、徐向华 2011 60 060512]

    [84]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈 群 2008 博士学位论文 (北京:清华大学)]

    [85]
    [86]

    Chen Q, Ren J X, Guo Z Y 2009 Chin. Sci. Bull. 54 1606 (in Chinese)[陈 群、任建勋、过增元 2009 科学通报 54 1606]

    [87]
    [88]

    Wang H D, Cao B Y, Guo Z Y 2010 Int. J. Heat Mass Transfer 53 1796

    [89]
  • [1]

    Onsager L 1931 Phys. Rev. 37 405

    [2]
    [3]

    Onsager L 1931 Phys. Rev. 38 2265

    [4]

    Radcenco V 1994 Generalized Thermodynamics (Bucharest: Editura Techica)

    [5]
    [6]

    Chen L, Bi Y, Wu C 1999 J. Phys. D: Appl. Phys. 32 1346

    [7]
    [8]

    Chen L, Wu C, Sun F 1999 J. Non-Equilibrium Thermod. 24 327

    [9]
    [10]
    [11]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Trans. 50 2545

    [12]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [13]
    [14]

    Cheng X G, Li Z X, Guo Z Y 2003 J. Eng. Thermophy. 24 94 (in Chinese) [程新广、李志信、过增元 2003 工程热 24 94]

    [15]
    [16]
    [17]

    Zhu H Y, Chen Z J, Guo Z Y 2007 Prog. Nat. Sci. 17 1692 (in Chinese) [朱宏晔、陈泽敬、过增元 2007 自然科学进展 17 1692]

    [18]

    Chen L G, Wei S H, Sun F R 2008 J. Phys. D: Appl. Phys. 41 195506

    [19]
    [20]

    Chen L G, Wei S H, Sun F R 2009 J. Appl. Phys. 105 094906

    [21]
    [22]
    [23]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China E 52 3504

    [24]

    Wei S H, Chen L G, Sun F R 2009 Sci. China E 52 2981

    [25]
    [26]
    [27]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China E 52 2937

    [28]
    [29]

    Xiao Q H, Chen L G, Sun F R 2010 Chin. Sci. Bull. 55 3753

    [30]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [31]
    [32]

    Wu J, Cheng X G, Meng J A, Guo Z Y 2006 J. Eng. Thermophy. 27 100 (in Chinese) [吴 晶、程新广、孟继安、过增元 2006 工程热 27 100]

    [33]
    [34]
    [35]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [36]
    [37]

    Xiao Q H, Chen L G, Sun F R 2010 Sci. China E 55 2427

    [38]

    Wu J, Liang X G 2008 Sci. China E 51 1306

    [39]
    [40]
    [41]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [42]
    [43]

    Liu X B, Meng J A, Guo Z Y 2008 Prog. Nat. Sci. 18 1186

    [44]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌、过增元 2009 58 4766]

    [45]
    [46]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [47]
    [48]
    [49]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [50]
    [51]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [52]
    [53]

    Xia S J, Chen L G, Sun F R 2010 Sci. China E 53 960

    [54]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2004 Acta Phys. Sin. 53 2796 (in Chinese) [谢永军、石勤伟、王晓平、朱平平、杨海洋、张兴元 2004 53 2796]

    [55]
    [56]
    [57]

    Huang X L, Cui S Z, Ning X B, Bian C H 2009 Acta Phys. Sin. 58 8160 (in Chinese) [黄晓林、崔胜忠、宁新宝、卞春华 2009 58 8160]

    [58]

    Zhao R, Zhang L C, Zhang S L 2007 Acta Phys. Sin. 56 3719 (in Chinese) [赵 仁、张丽春、张胜利 2007 56 3719]

    [59]
    [60]
    [61]

    Zhang C L, Hu S Q, Li H F, Zhao R 2008 Acta Phys. Sin. 57 3719 (in Chinese) [张丽春、胡双启、李怀繁、赵 仁 2008 57 3328]

    [62]

    Zeng X X 2010 Acta Phys. Sin. 59 92 (in Chinese) [曾晓雄 2010 59 92]

    [63]
    [64]

    Jin N D, Dong F, Zhao S 2007 Acta Phys. Sin. 56 720 (in Chinese) [金宁德、董 芳、赵 舒 2007 56 720]

    [65]
    [66]
    [67]

    Guo Y F, Xu W, Li D X, Wang L 2010 Acta Phys. Sin. 59 2235 (in Chinese) [郭永峰、徐 伟、李东喜、王 亮 2010 59 2235]

    [68]
    [69]

    Wang Q G, Zhang Z P 2008 Acta Phys. Sin. 57 1976 (in Chinese) [王启光、张增平2008 57 1976]

    [70]

    Bejan A 1979 ASME J. Heat Transfer 101 718

    [71]
    [72]
    [73]

    Poulikakos D, Bejan A 1982 ASME J. Heat Transfer 104 616

    [74]
    [75]

    Erek A, Dincer I 2008 Int. J. Thermal. Sci. 47 1077

    [76]

    Bejan A 1982 Adv. Heat Transfer 15 1

    [77]
    [78]
    [79]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [80]
    [81]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 222(in Chinese)[程雪涛、梁新刚、过增元 2011 科学通报 56 222]

    [82]
    [83]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛、梁新刚、徐向华 2011 60 060512]

    [84]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈 群 2008 博士学位论文 (北京:清华大学)]

    [85]
    [86]

    Chen Q, Ren J X, Guo Z Y 2009 Chin. Sci. Bull. 54 1606 (in Chinese)[陈 群、任建勋、过增元 2009 科学通报 54 1606]

    [87]
    [88]

    Wang H D, Cao B Y, Guo Z Y 2010 Int. J. Heat Mass Transfer 53 1796

    [89]
  • [1] 张大军. 可积系统的双线性约化方法.  , 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [2] 张大军. 离散可积系统: 多维相容性.  , 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [3] 徐佳迪, 姜志雄, 龚小龙. 黑洞吸积盘系统的喷流加速机制研究.  , 2017, 66(3): 039701. doi: 10.7498/aps.66.039701
    [4] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较.  , 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [5] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究.  , 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [6] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解.  , 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [7] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化.  , 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响.  , 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [9] 欧建文, 郑永刚, 张雄. 振荡吸积盘的光变研究.  , 2014, 63(23): 239801. doi: 10.7498/aps.63.239801
    [10] 赵甜, 陈群. (火积)的宏观物理意义及其应用.  , 2013, 62(23): 234401. doi: 10.7498/aps.62.234401
    [11] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化.  , 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化.  , 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [14] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述.  , 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [15] 程雪涛, 董源, 梁新刚. 积与积减原理.  , 2011, 60(11): 114402. doi: 10.7498/aps.60.114402
    [16] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅱ),广义能量极小值原理和系统的发展.  , 2003, 52(6): 1354-1359. doi: 10.7498/aps.52.1354
    [17] 林 机, 汪克林. 具有广义Virasoro对称代数的(3+1)维Painlevé可积模型.  , 2001, 50(1): 13-20. doi: 10.7498/aps.50.13
    [18] 杨祥林, 陈健. 增益噪声对光孤子通信系统码率距离积的限制.  , 1993, 42(1): 51-57. doi: 10.7498/aps.42.51
    [19] 高飞, 张宏图. 存在异性夹杂的位错塞积.  , 1988, 37(8): 1315-1325. doi: 10.7498/aps.37.1315
    [20] 傅广生, 韩理, 李晓苇, 张连水, 董丽芳, 吕福润, 薛春银. 激光等离子体淀积硅膜.  , 1987, 36(3): 293-300. doi: 10.7498/aps.36.293
计量
  • 文章访问数:  9358
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-09
  • 修回日期:  2011-01-10
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map