搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

积与积减原理

程雪涛 董源 梁新刚

引用本文:
Citation:

积与积减原理

程雪涛, 董源, 梁新刚

Potential entransy and potential entransy decrease principle

Cheng Xue-Tao, Dong Yuan, Liang Xin-Gang
PDF
导出引用
  • 文章分析了重力势能、引力势能、电荷势能、化学势能、热量势能、质量积、动量积等多种势能,发现它们均可表达为一种守恒广延量和对应的强度量的乘积,因此可将其统一定义为积.基于积这一概念,文章得到了孤立系统内守恒广延量传递过程的积减原理,即孤立系统内进行的守恒广延量传递过程中系统的积总是减小的.进一步,文章还基于积的概念发展了孤立系统和封闭系统的势平衡判据,发现孤立系统达到势平衡状态时,系统的积达到最小值(最小积原理);当封闭系统达到势平衡状态时,系统的准自由积达到最小值(最小准自由积原理).上述结论应用于传热学中即可得到热量传递过程的(火积)减原理及相应的热平衡判据.与热力学中的核心概念熵相对应,由于物理量(火积)可以描述传热过程的不可逆性,作为传热过程的优化准则,度量系统的无序度,并给出系统的热平衡判据,因此(火积)是传热学中的核心概念.
    In this paper, we analyze some kinds of potential energies, such as the geopotential energy, the electrostatic potential energy, the chemical potential energy, the mass entransy and so on. It is found that they all can be expressed as the product of a conservative extensive quantity and an intensity quantity. This kind of potential energy is named potential entransy. Based on the concept of potential entransy, the potential entransy decrease principle is developed. It is found that the potential entransy of an isolated system always decreases when the extensive quantity is transferred in the system. Furthermore, the criteria of equilibrium state for an isolated system and a common closed system are derived on the basis of the concept of potential entransy. It is found that when an isolated system reaches its equilibrium state, its potential entransy is a minimum value. When a common closed system reaches its equilibrium state, its quasi-free potential entransy is also a minimum value. In addition, when a closed system with prescribed potential is in its equilibrium state, its free potential entransy is also a minimum value. When the principles above are used in heat transfer, the entransy decrease principle for heat transfer and the thermal equilibrium criteria can be developed. We think that the new physical quantity, entransy in heat transfer, is the core concept of the subject, because it can be used to describe the irreversibility of heat transfer, optimize heat transfer processes, measure the disorder degree of one system, and set up the thermal equilibrium criteria.
    • 基金项目: 清华大学自主科研计划和国家自然科学基金重点项目(批准号:51136001)资助的课题.
    [1]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) p1-222 (in Chinese)[赵凯华、罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-222页]

    [2]

    Feng D, Feng S T 2008 The World of Entropy (Beijing: Science Press) p104-160 (in Chinese)[冯 端、冯少彤 2008 溯源探微熵的世界 (北京:科学出版社) 第104-160页]

    [3]

    Jin N D, Dong F, Zhao S 2007 Acta Phys. Sin. 56 720 (in Chinese)[金宁德、董 芳、赵 舒 2007 56 720]

    [4]

    Guo Y F, Xu W, Li D X, Wang L 2010 Acta Phys. Sin. 59 2235 (in Chinese)[郭永峰、徐 伟、李东喜、王 亮 2010 59 2235]

    [5]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2004 Acta Phys. Sin. 53 2796 (in Chinese)[谢永军、石勤伟、王晓平、朱平平、杨海洋、张兴元 2004 53 2796]

    [6]

    Huang X L, Cui S Z, Ning X B, Bian C H 2009 Acta Phys. Sin. 58 8160 (in Chinese)[黄晓林、崔胜忠、宁新宝、卞春华 2009 58 8160]

    [7]

    Bejan A 1979 ASME J. Heat Transfer 101 718

    [8]

    Poulikakos D, Bejan A 1982 ASME J. Heat Transfer 104 616

    [9]

    Erek A, Dincer I 2008 Int. J. Thermal Sci. 47 1077

    [10]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [11]

    Finlayson B A, Scriven L E 1967 Int. J. Heat Mass Transfer 10 799

    [12]

    Bejan A 1998 Advanced Engineering Thermodynamics (New York: Wiley)

    [13]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [14]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[程新广 2004 博士学位论文 (北京:清华大学)]

    [15]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese)[柳雄斌、过增元 2009 58 4766]

    [16]

    Cheng X T, Liang X G, Guo Z Y Chin. Sci. Bull. (in Press)

    [17]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese)[程雪涛、梁新刚、徐向华 2011 60 060512]

    [18]

    Chen Q, Ren J X, Guo Z Y 2009 Chin. Sci. Bull. 54 2862

    [19]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈 群 2008 博士学位论文 (北京:清华大学)]

    [20]

    Wu J 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[吴 晶 2009 博士学位论文 (北京:清华大学)]

    [21]

    Zhang S H 1998 College Physics: Mechanics (Beijing: Tsinghua University Press) p192-195 (in Chinese)[张三慧 1998 大学物理学:力学 (北京:清华大学出版社) 第192-195页]

    [22]

    Han G Z, Guo Z Y 2007 Pro. of the CSEE 27 98 (in Chinese)[韩光泽、过增元 2007 中国电机工程学报 27 98]

    [23]

    Zhu H Y, Chen Z J, Guo Z Y 2007 Prog. Nat. Sci. 17 1692 (in Chinese)[朱宏晔、陈泽敬、过增元 2007 自然科学进展 17 1692]

    [24]

    Chen L G, Wei S H, Sun F R 2008 J. Physics D: Appl. Phys. 41 195506

    [25]

    Chen L G, Wei S H, Sun F R 2009 J. Appl. Phys. 105 094906

    [26]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E-Tech. Sci. 52 3504

    [27]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E-Tech. Sci. 52 2981

    [28]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E-Tech. Sci. 52 2937

    [29]

    Wu J, Cheng X G, Meng J A, Guo Z Y 2006 J. Eng. Thermophysics 27 100 (in Chinese)[吴 晶、程新广、孟继安、过增元 2006 工程热 27 100]

    [30]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [31]

    Chen Q, Ren J X, Guo Z Y 2008 Int. J. Heat Mass Transfer 51 873

    [32]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [33]

    Wu J, Liang X G 2008 Sci. China Ser. E-Tech. Sci. 51 1306

    [34]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [35]

    Liu X B, Meng J A, Guo Z Y 2008 Prog. Nat. Sci. 18 1186

    [36]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [37]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [38]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [39]

    Xia S J, Chen L G, Sun F R 2010 Sci. China Ser. E-Tech. Sci. 53 960

    [40]

    Zeng D L, Ao Y, Zhu K X, Li Q R 1986 The Eengineering Thermodynamics (Beijing: Higher Education Press) (in Chinese)[曾丹苓、敖 越、朱克雄、李清荣 1986 工程热力学 (北京: 高等教育出版社)]

  • [1]

    Zhao K H, Luo W Y 2002 Thermotics (Beijing: Higher Education Press) p1-222 (in Chinese)[赵凯华、罗蔚茵 2002 热学 (北京: 高等教育出版社) 第1-222页]

    [2]

    Feng D, Feng S T 2008 The World of Entropy (Beijing: Science Press) p104-160 (in Chinese)[冯 端、冯少彤 2008 溯源探微熵的世界 (北京:科学出版社) 第104-160页]

    [3]

    Jin N D, Dong F, Zhao S 2007 Acta Phys. Sin. 56 720 (in Chinese)[金宁德、董 芳、赵 舒 2007 56 720]

    [4]

    Guo Y F, Xu W, Li D X, Wang L 2010 Acta Phys. Sin. 59 2235 (in Chinese)[郭永峰、徐 伟、李东喜、王 亮 2010 59 2235]

    [5]

    Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y, Zhang X Y 2004 Acta Phys. Sin. 53 2796 (in Chinese)[谢永军、石勤伟、王晓平、朱平平、杨海洋、张兴元 2004 53 2796]

    [6]

    Huang X L, Cui S Z, Ning X B, Bian C H 2009 Acta Phys. Sin. 58 8160 (in Chinese)[黄晓林、崔胜忠、宁新宝、卞春华 2009 58 8160]

    [7]

    Bejan A 1979 ASME J. Heat Transfer 101 718

    [8]

    Poulikakos D, Bejan A 1982 ASME J. Heat Transfer 104 616

    [9]

    Erek A, Dincer I 2008 Int. J. Thermal Sci. 47 1077

    [10]

    Shah R K, Skiepko T 2004 J. Heat Transfer 126 994

    [11]

    Finlayson B A, Scriven L E 1967 Int. J. Heat Mass Transfer 10 799

    [12]

    Bejan A 1998 Advanced Engineering Thermodynamics (New York: Wiley)

    [13]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [14]

    Cheng X G 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[程新广 2004 博士学位论文 (北京:清华大学)]

    [15]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese)[柳雄斌、过增元 2009 58 4766]

    [16]

    Cheng X T, Liang X G, Guo Z Y Chin. Sci. Bull. (in Press)

    [17]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese)[程雪涛、梁新刚、徐向华 2011 60 060512]

    [18]

    Chen Q, Ren J X, Guo Z Y 2009 Chin. Sci. Bull. 54 2862

    [19]

    Chen Q 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [陈 群 2008 博士学位论文 (北京:清华大学)]

    [20]

    Wu J 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[吴 晶 2009 博士学位论文 (北京:清华大学)]

    [21]

    Zhang S H 1998 College Physics: Mechanics (Beijing: Tsinghua University Press) p192-195 (in Chinese)[张三慧 1998 大学物理学:力学 (北京:清华大学出版社) 第192-195页]

    [22]

    Han G Z, Guo Z Y 2007 Pro. of the CSEE 27 98 (in Chinese)[韩光泽、过增元 2007 中国电机工程学报 27 98]

    [23]

    Zhu H Y, Chen Z J, Guo Z Y 2007 Prog. Nat. Sci. 17 1692 (in Chinese)[朱宏晔、陈泽敬、过增元 2007 自然科学进展 17 1692]

    [24]

    Chen L G, Wei S H, Sun F R 2008 J. Physics D: Appl. Phys. 41 195506

    [25]

    Chen L G, Wei S H, Sun F R 2009 J. Appl. Phys. 105 094906

    [26]

    Xie Z H, Chen L G, Sun F R 2009 Sci. China Ser. E-Tech. Sci. 52 3504

    [27]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E-Tech. Sci. 52 2981

    [28]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E-Tech. Sci. 52 2937

    [29]

    Wu J, Cheng X G, Meng J A, Guo Z Y 2006 J. Eng. Thermophysics 27 100 (in Chinese)[吴 晶、程新广、孟继安、过增元 2006 工程热 27 100]

    [30]

    Chen Q, Ren J X 2008 Chin. Sci. Bull. 53 3753

    [31]

    Chen Q, Ren J X, Guo Z Y 2008 Int. J. Heat Mass Transfer 51 873

    [32]

    Chen Q, Wang M R, Pan N, Guo Z Y 2009 Energy 34 1199

    [33]

    Wu J, Liang X G 2008 Sci. China Ser. E-Tech. Sci. 51 1306

    [34]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [35]

    Liu X B, Meng J A, Guo Z Y 2008 Prog. Nat. Sci. 18 1186

    [36]

    Liu X B, Meng J A, Guo Z Y 2009 Chin. Sci. Bull. 54 943

    [37]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3587

    [38]

    Guo J F, Cheng L, Xu M T 2009 Chin. Sci. Bull. 54 2708

    [39]

    Xia S J, Chen L G, Sun F R 2010 Sci. China Ser. E-Tech. Sci. 53 960

    [40]

    Zeng D L, Ao Y, Zhu K X, Li Q R 1986 The Eengineering Thermodynamics (Beijing: Higher Education Press) (in Chinese)[曾丹苓、敖 越、朱克雄、李清荣 1986 工程热力学 (北京: 高等教育出版社)]

  • [1] 张大军. 可积系统的双线性约化方法.  , 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [2] 张大军. 离散可积系统: 多维相容性.  , 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [3] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射.  , 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [4] 徐佳迪, 姜志雄, 龚小龙. 黑洞吸积盘系统的喷流加速机制研究.  , 2017, 66(3): 039701. doi: 10.7498/aps.66.039701
    [5] 欧建文, 郑永刚, 张雄. 振荡吸积盘的光变研究.  , 2014, 63(23): 239801. doi: 10.7498/aps.63.239801
    [6] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化.  , 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [7] 赵甜, 陈群. (火积)的宏观物理意义及其应用.  , 2013, 62(23): 234401. doi: 10.7498/aps.62.234401
    [8] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述.  , 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [9] 程雪涛, 徐向华, 梁新刚. 广义流动中的积原理.  , 2011, 60(11): 118103. doi: 10.7498/aps.60.118103
    [10] 田晓东, 岳瑞宏. 推广的多分量费米型量子可导非线性Schr?dinger模型的可积性.  , 2005, 54(4): 1485-1489. doi: 10.7498/aps.54.1485
    [11] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究.  , 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [12] 胡大治, 沈明荣. 淀积气压对脉冲激光淀积La掺杂钛酸铅薄膜介电性能的影响.  , 2004, 53(12): 4405-4409. doi: 10.7498/aps.53.4405
    [13] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 多波长系统孤子耦合方程的可积性.  , 2004, 53(6): 1623-1628. doi: 10.7498/aps.53.1623
    [14] 郭福奎, 张玉峰. AKNS方程族的一类扩展可积模型.  , 2002, 51(5): 951-954. doi: 10.7498/aps.51.951
    [15] 阮航宇, 陈一新. 具有物理背景的高维Painlevé可积模型.  , 2001, 50(4): 577-585. doi: 10.7498/aps.50.577
    [16] 阮航宇. 可积模型中孤子相互作用的研究.  , 2001, 50(3): 369-376. doi: 10.7498/aps.50.369
    [17] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线.  , 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
    [18] 杨祥林, 陈健. 增益噪声对光孤子通信系统码率距离积的限制.  , 1993, 42(1): 51-57. doi: 10.7498/aps.42.51
    [19] 高飞, 张宏图. 存在异性夹杂的位错塞积.  , 1988, 37(8): 1315-1325. doi: 10.7498/aps.37.1315
    [20] 傅广生, 韩理, 李晓苇, 张连水, 董丽芳, 吕福润, 薛春银. 激光等离子体淀积硅膜.  , 1987, 36(3): 293-300. doi: 10.7498/aps.36.293
计量
  • 文章访问数:  10374
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-01-11
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map