搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带喷流超声速光学头罩流场气动光学畸变试验研究

朱杨柱 易仕和 陈植 葛勇 王小虎 付佳

引用本文:
Citation:

带喷流超声速光学头罩流场气动光学畸变试验研究

朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳

Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection

Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia
PDF
导出引用
  • 超声速光学头罩在大气层内飞行时, 需要在光学窗口表面顺来流方向进行喷流冷却, 致使窗口上方流场更为复杂. 目标光线穿过窗口上方流场, 受到激波、膨胀波、混合层、湍流边界层等流场结构引起的变密度场影响而产生波前畸变, 导致成像出现偏移、抖动、模糊等气动光学效应. 本文对马赫数3.8来流条件下有无喷流时超声速光学头罩流场引起的气动光学波前畸变进行了试验研究. 基于纳米示踪的平面激光散射技术, 首先对流场图像进行密度校准获得高时空分辨率密度场, 然后采用光线追迹法计算得到波长532 nm平面光波垂直于光学窗口穿过流场后的光程差(optical path difference, OPD)分布, 并对窗口上方近壁区有无喷流状态的流场结构引起的 OPD分布进行了研究. 发现无喷流时, 流场结构相对较为简单, 窗口上方有较长的回流区和层流区, 而有喷流时窗口上方出现复杂的剪切层、混合层及湍流边界层, 流动很快就转捩为湍流结构, 其引起的气动光学畸变要明显高于无喷流状态. 无喷流状态相隔5 μs的流场引起的光程差均方根值分别为0.0348 和0.0356 μm, 有喷流状态的光程差均方根值分别为0.0462 和0.0485 μm.
    During the flight in the atmosphere, the optical window of an optical dome needs to be cooled, and supersonic film cooling is one of the economic ways. After traversing through the complex flow field above the window, the optical wave would be distorted by fluctuations in the density field due to the expansion wave, shockwave, mixing layer, turbulent boundary layer, etc. The aero-optical aberrations induced by the flow field of an optical dome in the presence and in the absence of the gas injection at Mach 3.8 are investigated experimentally. Based on the nano-tracer planar laser scattering (NPLS) technique, the density field with high spatial-temporal resolution is first obtained by the flow image calibration, and then the optical path difference (OPD)fluctuations of the original 532 nm planar wavefront perpendicular to the window are calculated using Ray-tracing theory. Also the OPD fluctuations caused by the near-wall region flow structures are presented. In the absence of the gas injection, the flow structure is relatively simple with a long recirculation and laminar region, while in the presence of the gas injection, there appear more complex structures such as shear layer, mixing layer and turbulent boundary layer and the flow is converted into turbulence quickly. Clearly, the optical aberration in the presence of the gas injection is degraded more. For example, the values of root-mean-square OPD (OPDrms) in the absence of the gas injection are 0.038 μm and 0.0356 μm, and they are 0.0462 μm, and 0.0485 μm in the presence of the gas injection during the interval 5 μs.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB724100)、国家自然科学基金(批准号:11172326)和国防科学技术大学科研计划(批准号:0100010112001)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), and the Science Research Program of National University of Defense Technology, China (Grant No. 0100010112001).
    [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 61 124401]

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerospace Sci. 37 299

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬阳, 吕群波, 张文喜 2012 61 124201]

    [4]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 59 692]

    [5]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 61 054201]

    [6]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 58 2435]

    [7]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 57 6666]

    [8]

    Li G C 2006 Aero-Optics (Beijing:National Defense Industry Press) (in Chinese) [李桂春 2006 气动光学 (北京:国防工业出版社)]

    [9]

    Klein M V 1970 Optics (New York:John Wiley and Sons)

    [10]

    Jumper E J 1997 AIAA Paper 1997-2350

    [11]

    Sutton G W 1985 AIAA J. 23 1525

    [12]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [13]

    Tian L F, Zhao Y X, He L, Chen Z 2011 Chin. Sci. Bull. 56 2320

    [14]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China G 53 81

    [15]

    Gao Q, Jiang Z F, Yi S H, Zhao Y X 2010 Appl. Opt. 49 3786

    [16]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [17]

    Sutton G W, Pond J E, Snow R, Hwang Y 1993 AIAA Paper 93-2675

    [18]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 J. Experim. Fluids Mech. 23 15 (in Chinese) [田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 2009 实验流体力学 23 15]

    [19]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3640

    [20]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [21]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 J. National Univ. Technol. 29 12 (in Chinese) [赵玉新, 易仕和, 何霖, 程忠宇, 田立丰 2007 国防科技大学学报 29 12]

    [22]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. China G 51 1134

    [23]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [24]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [25]

    Hornak J P 2002 Encyclopedia of Imaging Science and Technology (New York:John Wiley and Sons) pp390-420

    [26]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China G 52 1357

    [27]

    Yin X L 2003 Aero-optical Mechanism (Beijing:China Astronautics Press) p186 (in Chinese) [殷兴良 2003 气动光学原理 (北京:中国宇航出版社) p186]

  • [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 61 124401]

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerospace Sci. 37 299

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬阳, 吕群波, 张文喜 2012 61 124201]

    [4]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 59 692]

    [5]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 61 054201]

    [6]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 58 2435]

    [7]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 57 6666]

    [8]

    Li G C 2006 Aero-Optics (Beijing:National Defense Industry Press) (in Chinese) [李桂春 2006 气动光学 (北京:国防工业出版社)]

    [9]

    Klein M V 1970 Optics (New York:John Wiley and Sons)

    [10]

    Jumper E J 1997 AIAA Paper 1997-2350

    [11]

    Sutton G W 1985 AIAA J. 23 1525

    [12]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [13]

    Tian L F, Zhao Y X, He L, Chen Z 2011 Chin. Sci. Bull. 56 2320

    [14]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China G 53 81

    [15]

    Gao Q, Jiang Z F, Yi S H, Zhao Y X 2010 Appl. Opt. 49 3786

    [16]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [17]

    Sutton G W, Pond J E, Snow R, Hwang Y 1993 AIAA Paper 93-2675

    [18]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 J. Experim. Fluids Mech. 23 15 (in Chinese) [田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 2009 实验流体力学 23 15]

    [19]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3640

    [20]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [21]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 J. National Univ. Technol. 29 12 (in Chinese) [赵玉新, 易仕和, 何霖, 程忠宇, 田立丰 2007 国防科技大学学报 29 12]

    [22]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. China G 51 1134

    [23]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [24]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [25]

    Hornak J P 2002 Encyclopedia of Imaging Science and Technology (New York:John Wiley and Sons) pp390-420

    [26]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China G 52 1357

    [27]

    Yin X L 2003 Aero-optical Mechanism (Beijing:China Astronautics Press) p186 (in Chinese) [殷兴良 2003 气动光学原理 (北京:中国宇航出版社) p186]

  • [1] 孙伟, 吕冲, 雷柱, 王钊, 仲佳勇. 磁场对激光驱动的喷流演化影响的二维数值研究.  , 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [3] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析.  , 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [4] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法.  , 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [5] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响.  , 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [6] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [7] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析.  , 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [8] 徐佳迪, 姜志雄, 龚小龙. 黑洞吸积盘系统的喷流加速机制研究.  , 2017, 66(3): 039701. doi: 10.7498/aps.66.039701
    [9] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [10] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究.  , 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [11] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性.  , 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [12] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正.  , 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [13] 冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究.  , 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [14] 朱杨柱, 易仕和, 孔小平, 何霖. 带喷流超声速后台阶流场精细结构及其运动特性研究.  , 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [15] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流.  , 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [16] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性.  , 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [17] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析.  , 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [18] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究.  , 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [19] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析.  , 2009, 58(6): 3877-3886. doi: 10.7498/aps.58.3877
    [20] 吴海英, 张淳民, 赵葆常, 李英才. 改型Wollaston棱镜的光程差及其特性分析.  , 2009, 58(3): 1642-1647. doi: 10.7498/aps.58.1642
计量
  • 文章访问数:  6846
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-09
  • 修回日期:  2012-12-07
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map