Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S/X dual-band real-time modulated frequency selective surface based absorber

Zhou Shi-Hao Fang Xin-Yu Li Meng-Meng Yu Ye-Feng Chen Ru-Shan

Citation:

S/X dual-band real-time modulated frequency selective surface based absorber

Zhou Shi-Hao, Fang Xin-Yu, Li Meng-Meng, Yu Ye-Feng, Chen Ru-Shan
PDF
HTML
Get Citation
  • Frequency selective surface (FSS) is of great research interest for its wide applications in radome, absorber, electromagnetic filters, and artificial electromagnetic bandgap materials. In order to achieve a multifunctional FSS with real-time manipulated radar cross-section (RCS), there are mainly three ways, i.e. to design reconfigurable FSS unit cell, reconfigurable screen, and a combination of reconfigurable unit cell and screen. In this work, a combination design of both the reconfigurable unit cells and FSS screen is proposed to realize a dual-band FSS absorber with real-time manipulated RCS. For the reconfigurable unit cell, an angular ring and a meander cross dipole are combined to obtain a dual-band absorption. The dual-band resonance frequencies are reconfigurable by switching the PIN diodes embedded in the unit cell. When switching the PIN diodes, the resonance frequencies of the unit cell would be changed due to the variation of the effective capacitance and inductance of the unit cell. For the reconfigurable FSS screen, a novel biasing network is introduced, then the scattering field from each unit cell is modulated independently by switching the “on/off” state of the PIN diode through using a programmable field programmable gate array (FPGA). The total scattering far field is expressed as the superposition of the scattering field from each unit cell, and the far field scattered by the unit cell which is evaluated under an infinite periodic boundary condition. The scattering field of the FSS absorber can be predicted by considering the working states of all the unit cells on the screen. We define the unit cell as state “0”, when all the PIN diodes are at the states of “off”, and as state “1” when the PIN diodes are all at the states of “off”. The entire screen of FSS absorber is thus pixelated, which can be expressed by a binary coding matrix. The real-time scattering fields from the FSS absorber are manipulated perfectly by optimizing the states matrices showing “on/off” of each unit cell with genetic algorithm (GA). The FSS absorber is fabricated and measured. The ranges of 33dB and 25dB reconfigurable monostatic RCS at 3.2 GHz and 10.3 GHz are achieved by coding the states of unit cells on the FSS absorber screen. Both full-wave and analytical simulations demonstrate the effectiveness of the proposed optimization procedure. Compared with the reported FSS absorber, the proposed design is validated to possess good performance.
      Corresponding author: Li Meng-Meng, limengmeng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871222, 61890540, 61890541), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171429), and the Fundamental Research Funds for the Central Universities (Grant No. 30918011103)
    [1]

    Munk B A 2020 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp5–25

    [2]

    Wu T K Ed 1995 Frequency Selective Surface and Grid Array (New York: Wiley) pp5–25

    [3]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61

    [4]

    Bossard J A, Werner D H, Mayer T S, Drupp R P 2005 IEEE Trans. Antennas Propag. 53 1390

    [5]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740

    [6]

    Ghosh S, Srivastava K V 2017 IEEE Antennas Wireless Propag. Lett. 16 1687

    [7]

    Ghosh S, Srivastava K V 2014 IEEE Antennas Wireless Propag. Lett. 14 511

    [8]

    Tennant A, Chambers B 2004 IEEE Microw. Wireless Compon. Lett. 14 46

    [9]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Optics Express 20 4675Google Scholar

    [10]

    吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 64 164102Google Scholar

    Wu C J, Cheng Y Z., Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102Google Scholar

    [11]

    李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103Google Scholar

    [12]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [13]

    Costantine J, Tawk Y, Barbin S E, Christodoulou C G 2015 Proc. IEEE 103 424Google Scholar

    [14]

    Zhu B, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. 24 121Google Scholar

    [15]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [16]

    WangM, Hu C, Pu M, Huang C, Ma X, Luo X 2012 Electron. Lett. 48 1002

    [17]

    Xu W, He Y, Kong P, Li J, Xu H, Miao L, Bie S, Jiang J 2015 J. Appl. Phys. 118 184903Google Scholar

    [18]

    Parker E A, Savia S B 2001 in Proc. Inst. Elect. Eng. Microwaves, Antennas, Propag. 148 103Google Scholar

    [19]

    Lima A C de C, Parker E A, Langley R J 1994 Electron. Lett. 30 281Google Scholar

    [20]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [21]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [22]

    Pazokian M, Komjani N, Karimipour M 2018 IEEE Antennas Wireless Propag. Lett. 17 1382Google Scholar

    [23]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16 724

    [24]

    Yu J, Jiang W, Gong S 2019 IEEE Antennas Wireless Propag. Lett. 18 2016Google Scholar

    [25]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [26]

    Liu Y, Li K, Jia Y, Hao Y, Gong S X, Guo Y J 2016 IEEE Trans.Antennas Propag. 64 326Google Scholar

    [27]

    Yang H, Yang F, Xu S, Mao Y, Li M, Cao X, Gao J 2016 IEEE Trans.Antennas Propag. 64 2246Google Scholar

    [28]

    Yang H, Yang F, Cao X, Xu S, Gao J, Chen X, Li M, Li T 2017 IEEE Trans.Antennas Propag. 65 3024Google Scholar

    [29]

    Xu J, Li M, Chen R S 2017 IET Microwaves Antennas Propag. 11 1578

  • 图 1  可重构FSS单元 (a) 俯视图; (b) 侧视图

    Figure 1.  Configuration of the dual-band reconfigurable FSS unit cell: (a) Top view; (b) side view.

    图 2  FSS单元反射系数的仿真结果

    Figure 2.  Simulated reflection coefficients of the proposed dual-band reconfigurable FSS unit cell.

    图 3  单元二极管全“截止”状态时表面电流分布 (a) 3.9 GHz, (b) 10.6 GHz; 单元二极管全“导通”状态时表面电流分布 (c) 3.9 GHz, (d) 10.6 GHz

    Figure 3.  Surface currents distribution of the FSS unit cell with PIN diodes all at “off” states at (a) 3.9 GHz and (b) 10.6 GHz; surface currents distribution of the FSS unit cell with PIN diodes all at “on” states at (c) 3.9 GHz and (d) 10.6 GHz.

    图 4  单元的二极管全“截止”状态时频率为 (a) 3.9 GHz, (c) 10.6 GHz的RCS; 单元的二极管全“导通”状态时频率为 (b) 3.9 GHz, (d) 10.6 GHz的RCS

    Figure 4.  Simulated two-dimensional RCS of the FSS unit cell with PIN diodes all at “off” states at (a) 3.9 GHz and (c) 10.6 GHz; two-dimensional RCS when with PIN diodes all at “on” states at (b) 3.9 GHz and (d) 10.6 GHz.

    图 5  RCS实时可调的FSS吸波器 (a) 可重构FSS吸波器系统包括FSS吸波器, FPGA, 状态编码的PIN开关; (b) 偏置网络

    Figure 5.  Reconfigurable FSS absorber with real-time coding RCS: (a) System of the reconfigurable FSS absorber including FSS absorber, programmable FPGA, and coding for the states of switchable PIN diodes, inset is a fabricated unit cell; (b) biasing network for PIN diodes embedded in the meander cross (MC) and angular ring (AR) of the unit cells.

    图 6  在3.8 GHz频率下双站RCS的全波仿真结果, 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS为 (a) 10dB, (b) 5dB, (c) 0dB, (d) 1/4阵列的优化状态

    Figure 6.  Full-wave and analytical method simulated bistatic RCS of the reconfigurable FSS absorber at 3.8 GHz. The RCS is manipulated to be (a) 10dB, (b) 5dB, and (c) 0dB at the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$, when optimizing the states matrices as in (d) of the unit cells of a quarter of the screen.

    图 7  在10.5 GHz频率下双站RCS的全波仿真结果, 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS为 (a) 20dB, (b) 15dB, (c) 10dB, (d) 1/4阵列的优化状态

    Figure 7.  Full-wave and analytical method simulated bistatic RCS of the reconfigurable FSS absorber at 10.5 GHz. The RCS is manipulated to be (a) 20dB (b) 15dB, and (c) 10dB at the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$, when optimizing the states matrices as in (d) of the unit cells of a quarter of the screen.

    图 8  双站RCS全波仿真结果. 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS在3.8 GHz频率下为 (a) 10 dB, (b) 5 dB, (c) 0 dB; 在10.5 GHz频率下为 (d) 20 dB, (e) 15 dB, (f) 10 dB

    Figure 8.  Full-wave simulated two-dimensional RCS of the reconfigurable FSS absorber. The RCS from the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$ is optimized to be (a) 10 dB, (b) 5 dB, and (c) 0 dB at 3.8 GHz; the RCS is optimized to be (d) 20 dB, (e) 15 dB, and (f) 10 dB at 10.5 GHz.

    图 9  双频可重构FSS波收器的测量 (a) 单站RCS的测量设置; (b) 图7中测量的FSS阵列的4种状态

    Figure 9.  Measurement of the proposed dual-band reconfigurable FSS absorber: (a) Measurement setup for the monostatic RCS; (b) four states of the FSS screen measured in Fig. 7.

    图 10  (a) 2.9—3.7 GHz, (b) 9.7—11.1 GHz范围内FSS吸波器单站RCS测量值, 可调节RCS范围分别为33dB和26dB.

    Figure 10.  Measured monostatic RCS of the FSS absorber within (a) 2.9 to 3.7 GHz and (b) 9.7 to 11.1 GHz, ranges of 33dB and 26dB tunable RCS are obtained.

    表 1  通孔1, 2, 3, 4的电压变化, 可重新配置FSS的吸波器状态

    Table 1.  Reconfigurable FSS based absorber unit cell with the change of the voltage of via holes 1, 2, 3, and 4.

    状态通孔1通孔2通孔3通孔4圆环偶极子LED
    1
    2
    3
    4
    DownLoad: CSV

    表 2  与现有可重构基于FSS的吸波器的比较

    Table 2.  Lists of the comparison with existing published reconfigurable FSS based absorber.

    可重构吸波器带宽个数频率范围/GHz厚度(${\lambda _0}$)大小(${\lambda _0}$)RCS可调节范围/dB能否调控RCS
    [6]22.26, 3.79
    4.02, 6.36
    0.022.08 × 2.08–16
    [11]12.60, 2.900.022.7 × 2.9
    [12]14.10, 4.790.052.4 × 1.1–25
    [13]11.95, 2.070.023.2 × 3.2–40
    [14]10.70, 0.90, 1.10, 1.40, 1.50, 1.800.032.0 × 2.0–10
    [19]18.800.9 × 0.9–24
    本工作23.20, 10.30
    4.80, 11.00
    0.0812.5 × 6.253326
    DownLoad: CSV
    Baidu
  • [1]

    Munk B A 2020 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp5–25

    [2]

    Wu T K Ed 1995 Frequency Selective Surface and Grid Array (New York: Wiley) pp5–25

    [3]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61

    [4]

    Bossard J A, Werner D H, Mayer T S, Drupp R P 2005 IEEE Trans. Antennas Propag. 53 1390

    [5]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740

    [6]

    Ghosh S, Srivastava K V 2017 IEEE Antennas Wireless Propag. Lett. 16 1687

    [7]

    Ghosh S, Srivastava K V 2014 IEEE Antennas Wireless Propag. Lett. 14 511

    [8]

    Tennant A, Chambers B 2004 IEEE Microw. Wireless Compon. Lett. 14 46

    [9]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Optics Express 20 4675Google Scholar

    [10]

    吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 64 164102Google Scholar

    Wu C J, Cheng Y Z., Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102Google Scholar

    [11]

    李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103Google Scholar

    [12]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [13]

    Costantine J, Tawk Y, Barbin S E, Christodoulou C G 2015 Proc. IEEE 103 424Google Scholar

    [14]

    Zhu B, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. 24 121Google Scholar

    [15]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [16]

    WangM, Hu C, Pu M, Huang C, Ma X, Luo X 2012 Electron. Lett. 48 1002

    [17]

    Xu W, He Y, Kong P, Li J, Xu H, Miao L, Bie S, Jiang J 2015 J. Appl. Phys. 118 184903Google Scholar

    [18]

    Parker E A, Savia S B 2001 in Proc. Inst. Elect. Eng. Microwaves, Antennas, Propag. 148 103Google Scholar

    [19]

    Lima A C de C, Parker E A, Langley R J 1994 Electron. Lett. 30 281Google Scholar

    [20]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [21]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [22]

    Pazokian M, Komjani N, Karimipour M 2018 IEEE Antennas Wireless Propag. Lett. 17 1382Google Scholar

    [23]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16 724

    [24]

    Yu J, Jiang W, Gong S 2019 IEEE Antennas Wireless Propag. Lett. 18 2016Google Scholar

    [25]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [26]

    Liu Y, Li K, Jia Y, Hao Y, Gong S X, Guo Y J 2016 IEEE Trans.Antennas Propag. 64 326Google Scholar

    [27]

    Yang H, Yang F, Xu S, Mao Y, Li M, Cao X, Gao J 2016 IEEE Trans.Antennas Propag. 64 2246Google Scholar

    [28]

    Yang H, Yang F, Cao X, Xu S, Gao J, Chen X, Li M, Li T 2017 IEEE Trans.Antennas Propag. 65 3024Google Scholar

    [29]

    Xu J, Li M, Chen R S 2017 IET Microwaves Antennas Propag. 11 1578

  • [1] Wang Cheng-Rong, Tang Li, Zhou Yan-Ping, Zhao Xiang, Liu Chang-Jun, Yan Li-Ping. Switchable and optically transparent ultrawide stopband frequency selective surface for electromagnetic shielding. Acta Physica Sinica, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [3] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] Yu Hui-Cun, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Han Jiang-Feng, Zhu Xue-Wen, Li Tong. Broadband reconfigurable reflective polarization convertor. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [5] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [6] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [8] Hui Yi-Cong, Wang Chun-Qi, Huang Xiao-Zhong. Design and fabrication of broadband radar metamaterial absorber based on the resistor FSS. Acta Physica Sinica, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [9] Xu Yong-Shun, Bie Shao-Wei, Jiang Jian-Jun, Xu Hai-Bing, Wan Dong, Zhou Jie. Composite absorber of broadband and high attenuation with spiral frequency selective surfaces. Acta Physica Sinica, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [10] Lan Feng, Gao Xi, Qi Li-Mei. Terahertz bandpass filter using double-layer reformative complementary frequency selective surface structures. Acta Physica Sinica, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [11] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai. A novel frequency selective surface with stable performance and its application in microstrip antenna. Acta Physica Sinica, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [13] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] Xia Bu-Gang, Zhang De-Hai, Meng Jin, Zhao Xin. Restrain the spurious resonance of second-order fractal frequency selective surface in MMW band. Acta Physica Sinica, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [16] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [17] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [18] Zhou Hang, Qu Shao-Bo, Peng Wei-Dong, Wang Jia-Fu, Ma Hua, Zhang Dong-Wei, Zhang Jie-Qiu, Bai Peng, Xu Zhuo. A novel frequency selective surface loaded with resistance films absobers. Acta Physica Sinica, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [19] Chen Qian, Jiang Jian-Jun, Bie Shao-Wei, Wang Peng, Liu Peng, Xu Xin-Xin. Tunable composite absorber with active frequency selective surface. Acta Physica Sinica, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [20] Li Xiao-Qiu, Gao Jin-Song, Zhao Jing-Li, Sun Lian-Chun. A novel element of frequency selective surface for radome. Acta Physica Sinica, 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
Metrics
  • Abstract views:  8273
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2020
  • Accepted Date:  12 June 2020
  • Available Online:  12 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回
Baidu
map