Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations

Xiang Zheng Tan Jia-Qiang Ni Bin-Bin Gu Xu-Dong Cao Xing Zou Zheng-Yang Zhou Chen Fu Song Shi Run Zhao Zheng-Yu He Feng-Ming Zheng Cheng-Yao Yin Qian Wang Hao

Citation:

A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations

Xiang Zheng, Tan Jia-Qiang, Ni Bin-Bin, Gu Xu-Dong, Cao Xing, Zou Zheng-Yang, Zhou Chen, Fu Song, Shi Run, Zhao Zheng-Yu, He Feng-Ming, Zheng Cheng-Yao, Yin Qian, Wang Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Plasmaspheric hiss plays an important role in driving the precipitation loss of radiation belt electrons via pitch angle scattering, which is also known as the major cause of the formation of the slot region between the inner and outer radiation belt. Therefore, it is of scientific importance to acquire a complete picture of the global distribution of plasmaspheric hiss. Using the thirty-three month high-quality wave data of the Van Allen Probes from September 2012 to May 2015, which provide excellent coverage in the entire inner magnetosphere, we investigate in detail the characteristics of the global distribution of plasmaspheric hiss bin-averaged wave amplitude and occurrence rate with respect to the geomagnetic activity level, L-shell, geomagnetic latitude, and magnetic local time. It is demonstrated that the bin-averaged hiss amplitude strongly depends on the level of geomagnetic activity and exhibits a pronounced day-night asymmetry. Dayside hiss shows a tendency intensifying with the disturbed geomagnetic condition, which is primarily confined to L=2.5-4.0. In contrast, the average hiss amplitude on the nightside tends to decrease. It should also be noted that plasmaspheric hiss at different amplitude levels varies distinctly with geomagnetic condition. As the geomagnetic disturbance increases, the occurrence rate of hiss wave at a smaller amplitude level (i.e., 5-30 pT) increases on the nightside but decreases on the dayside, while the occurrence pattern of higher amplitude ( 30 pT) hiss wave is opposite. For high amplitude hiss wave, the occurrence rate increases on the dayside during intense geomagnetic activities while decreases on the nightside. This is probably because during active times, suprathermal electron fluxes are larger on the nightside, which causes stronger Landau damping of whistler mode waves and thus limits the ability of chorus waves to propagate into the plasmasphere and evolve into plasmaspheric hiss. In addition, plasmaspheric hiss waves with the amplitudes ranging from 5 to 30 pT have the highest occurrence probability both around the geomagnetic equator and at higher latitudes. Our statistical results can provide a reasonable and accurate cognition complementary to the current knowledge of the global features of plasmaspheric hiss, especially in the inner magnetosphere of L=2-6, thereby offering essential input parameters of hiss wave distribution for future simulations of the dynamic spatiotemporal variations of radiation belt electrons at different energies and pitch angles under the influence of diverse solar wind and magentospheric circumstances. Therefore, we suggest that these new properties of hiss wave should be incorporated into the future modeling of radiation belt electron dynamics.
      Corresponding author: Ni Bin-Bin, bbni@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41204120, 41304130, 41474141, 41574160), the China Postdoctoral Science Foundation (Grant Nos. 2013M542041, 2014T70732, 2015M582265), and the National Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 201510486081).
    [1]

    Thorne R M, Smith E J, Burton R K, Holzer R E 1973 J. Geophys. Res. 78 1581

    [2]

    Meredith N P, Horne R B, Thorne R M, Summers D, Anderson R R 2004 J. Geophys. Res. A 109 06209

    [3]

    Summers D, Ni B, Meredith N P, Horne R B, Thorne R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. A 113 04219

    [4]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. 78 2142

    [5]

    Summers D, Ni B, Meredith N P 2007 J. Geophys. Res. A 112 04207

    [6]

    Reeves G D, Friedel H W, Larsen B A, Skoug R M, Funsten H O, Claudepierre S G, Fennell J F, Turener D L, Denton M H, Spence H E, Blake J B, Baker D N 2016 J. Geophys. Res. Space Phys. 121 397

    [7]

    Ripoll J F, Reeves G D, Loridan V, Denton M, Santolik O, Kurth W S, Kletzing C A, Turner D L, Henderson M G, Ukhorskiy A Y 2016 Geophys. Res. Lett. 43 5616

    [8]

    Thorne R M, Li W, Ni B, Ma Q, Bortnik J, Baker D N, Spence H E, Reeves G D, Henderson M G, Kletzing C A, Kurth W S, Hospodarsky G B, Turener D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507

    [9]

    Ni B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740

    [10]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. 84 5241

    [11]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62

    [12]

    Bortnik J, Li W, Thorne R M, Angelopouslos V, Cully C, Bonnell J, Contel O L, Roux A 2009 Science 324 775

    [13]

    Chen L, Bortnik J, Li W, Thorne R M, Horne R B 2012 J. Geophys. Res. A 117 05201

    [14]

    Chen L, Bortnik J, Li W, Thorne R M, Horne R B 2012 J. Geophys. Res. A 117 05202

    [15]

    Tsurutani B T, Falkowski B J, Pickett J S, Santolik O, Lakhina G S 2015 J. Geophys. Res. Space Phys. 120 414

    [16]

    Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G, Wygant J R, Thaller S A 2013 Geophys. Res. Lett. 40 3798

    [17]

    Ni B, Li W, Thorne R M, Jacob B, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854

    [18]

    Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3394

    [19]

    Spasojevic M, Shprits Y Y, Orlova K 2015 J. Geophys. Res. Space Phys. 120 10370

    [20]

    Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G, Ukhorskiy A 2013 Space Sci. Rev. 179 3

    [21]

    Kletzing C A 2013 Space Sci. Rev. 179 127

    [22]

    Santolík O, Parrot M, Lefeuvre F 2003 Radio Sci. 38 1010

    [23]

    Kurth W S, de Pascuale S, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904

  • [1]

    Thorne R M, Smith E J, Burton R K, Holzer R E 1973 J. Geophys. Res. 78 1581

    [2]

    Meredith N P, Horne R B, Thorne R M, Summers D, Anderson R R 2004 J. Geophys. Res. A 109 06209

    [3]

    Summers D, Ni B, Meredith N P, Horne R B, Thorne R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. A 113 04219

    [4]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. 78 2142

    [5]

    Summers D, Ni B, Meredith N P 2007 J. Geophys. Res. A 112 04207

    [6]

    Reeves G D, Friedel H W, Larsen B A, Skoug R M, Funsten H O, Claudepierre S G, Fennell J F, Turener D L, Denton M H, Spence H E, Blake J B, Baker D N 2016 J. Geophys. Res. Space Phys. 121 397

    [7]

    Ripoll J F, Reeves G D, Loridan V, Denton M, Santolik O, Kurth W S, Kletzing C A, Turner D L, Henderson M G, Ukhorskiy A Y 2016 Geophys. Res. Lett. 43 5616

    [8]

    Thorne R M, Li W, Ni B, Ma Q, Bortnik J, Baker D N, Spence H E, Reeves G D, Henderson M G, Kletzing C A, Kurth W S, Hospodarsky G B, Turener D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507

    [9]

    Ni B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740

    [10]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. 84 5241

    [11]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62

    [12]

    Bortnik J, Li W, Thorne R M, Angelopouslos V, Cully C, Bonnell J, Contel O L, Roux A 2009 Science 324 775

    [13]

    Chen L, Bortnik J, Li W, Thorne R M, Horne R B 2012 J. Geophys. Res. A 117 05201

    [14]

    Chen L, Bortnik J, Li W, Thorne R M, Horne R B 2012 J. Geophys. Res. A 117 05202

    [15]

    Tsurutani B T, Falkowski B J, Pickett J S, Santolik O, Lakhina G S 2015 J. Geophys. Res. Space Phys. 120 414

    [16]

    Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G, Wygant J R, Thaller S A 2013 Geophys. Res. Lett. 40 3798

    [17]

    Ni B, Li W, Thorne R M, Jacob B, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854

    [18]

    Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3394

    [19]

    Spasojevic M, Shprits Y Y, Orlova K 2015 J. Geophys. Res. Space Phys. 120 10370

    [20]

    Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G, Ukhorskiy A 2013 Space Sci. Rev. 179 3

    [21]

    Kletzing C A 2013 Space Sci. Rev. 179 127

    [22]

    Santolík O, Parrot M, Lefeuvre F 2003 Radio Sci. 38 1010

    [23]

    Kurth W S, de Pascuale S, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904

  • [1] Chen Long, Tan Cong-Qi, Cui Zuo-Jun, Duan Ping, An Yu-Hao, Chen Jun-Yu, Zhou Li-Na. Multi-ion magnetized sheath properties with non-extensive electron distribution. Acta Physica Sinica, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] Xu Zi-Qiang, Yang Tai-Ping, Qian Yuan-Yuan, Si Fu-Qi. Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorithm. Acta Physica Sinica, 2023, 72(1): 014209. doi: 10.7498/aps.72.20221290
    [3] Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin. Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss. Acta Physica Sinica, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [4] Zhu Qi, Ma Xin, Cao Xing, Ni Bin-Bin, Xiang Zheng, Fu Song, Gu Xu-Dong, Zhang Yuan-Nong. Assessment of applicability of cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations. Acta Physica Sinica, 2022, 71(5): 051101. doi: 10.7498/aps.71.20211671
    [5] Assessment of the applicability of the cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211671
    [6] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] Su Yong, Fan Dong-Ming, You Wei. Gravity field model calculated by using the GOCE data. Acta Physica Sinica, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [8] Wu Zhen-Yu, Yang Yin-Tang, Wang Jia-You. Study on current distribution and radiation characteristics of plasma antennas. Acta Physica Sinica, 2010, 59(3): 1890-1894. doi: 10.7498/aps.59.1890
    [9] Sun Kai, Xin Yu, Huang Xiao-Jiang, Yuan Qiang-Hua, Ning Zhao-Yuan. Characteristics of electron energy distribution function of capacitively coupled plasma excited by 60MHz RF source. Acta Physica Sinica, 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [10] Yang Juan, Liu Wen-Yi, Zhu Guo-Qiang, Mao Gen-Wang. Diagnostic study on the electron density distribution of microwave plasma jet in vacuum environment. Acta Physica Sinica, 2007, 56(1): 366-370. doi: 10.7498/aps.56.366
    [11] The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [12] Wang Wei-Min, Zheng Chun-Yang. Self-focusing of ultra-intense short laser pulses in plasmas with various density distributions. Acta Physica Sinica, 2006, 55(1): 310-320. doi: 10.7498/aps.55.310
    [13] Wang Min-Sheng, Liu Ling-Tao, Han Xiao-Ying, Li Jia-Ming. Simulation of hot dense plasma’s ionic population: beyond the average atom model. Acta Physica Sinica, 2006, 55(5): 2371-2380. doi: 10.7498/aps.55.2371
    [14] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [15] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [16] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [17] JIANG ZHI-MING, XU ZHI-ZHAN, CHEN SHI-SHENG, LIN LI-HUANG, ZHANG WEI-QING, QIAN AI-DI. INVESTIGATION OF LASER-PRODUCED PLASMA USING MULTI-FRAME OPTICAL PROBING DIAGNOSTICS. Acta Physica Sinica, 1988, 37(10): 1658-1663. doi: 10.7498/aps.37.1658
    [18] FENG XIAN-PING, XU ZHI-ZHAN, JIANG ZHI-MING, ZHANG ZHENG-QUAN, CHEN SHI-SHENG, FAN PIN-ZHONG, TIAN LI, ZHOU ZI-JIN. SPACE DISTRIBUTION OF HIGH IONIZING IONS IN PLASMA. Acta Physica Sinica, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [19] CHEN YA-SHEN. THE PLASMA DRIVEN BY ELECTRONS WITH TWO-MAXWELL DISTRIBUTION. Acta Physica Sinica, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
    [20] ZHANG YANG-ZHONG. A THEORY OF THE AVERAGE PROPAGATOR FOR THE PLASMA TURBULENCE IN GAUSSIAN PROCESS. Acta Physica Sinica, 1981, 30(5): 584-593. doi: 10.7498/aps.30.584
Metrics
  • Abstract views:  6410
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2016
  • Accepted Date:  20 September 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map