搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kiselev黑洞的热力学性质和物质吸积特性

魏益焕

引用本文:
Citation:

Kiselev黑洞的热力学性质和物质吸积特性

魏益焕

Thermodynamic properties and matter accretion properties of Kiselev black hole

Wei Yi-Huan
PDF
HTML
导出引用
  • 本文考虑带有黑洞视界和宇宙视界的Kiselev时空. 研究以黑洞视界和宇宙视界为边界的系统的热力学性质. 统一地给出了两个系统的热力学第一定律; 在黑洞视界半径远小于宇宙视界半径的情况下, 近似地计算了通过宇宙视界和黑洞视界的热能. 然后, 探讨Kiselev时空的物质吸积特性. 在吸积能量密度正比于背景 能量密度的条件下给出黑洞的吸积率, 讨论了黑洞吸积率与暗能量态方程参数的关系.
    Kiselev black hole possesses the two horizons, i.e. the inner horizon and outer horizon. In some cases, the so-called outer horizon of black hole is actually a cosmic horizon. In this paper, Kiselev space-time with black hole horizon and cosmic horizon is considered. The radius of black hole horizon and the radius of cosmic horizon are approximately obtained to be $r_{\rm B} \approx 2M \left[ 1 + \left(2M/{\lambda}\right)^{-(3w_{\rm {\rm q}}+1)} \right]$ and $r_{\rm C} \approx \lambda + \dfrac{2M} {3w_{\rm {\rm q}}+1}$ with $M \ll \lambda$ and $w_{\rm q}$ a parameter. The energy density of the Kiselev spacetime near the cosmic horizon is approximately proportional to $w_{\rm q}$, so the energy densities with some different $ w_{\rm q}$ have the same order of magnitude in the range $-1<w_{\rm q} < - 1/3$. Near the black hole horizon, it increases rapidly with the increase of $w_{\rm q}$.  The thermodynamic properties of the systems with black hole horizon and cosmic horizon as boundary are studied. The first law of thermodynamics for the two systems is given in a unified way. Similarly, Smarr relation for the mass of Kiselev black hole is also obtained. For $M \ll \lambda $, the work done by the fluid on the cosmic horizon and the thermal energy flux flowing into the cosmic horizon of Kiselev spacetime are calculated approximately. In the range of $-1 < w_{\rm q} < - 1/3 $, the thermal energy always flows out of the cosmic horizon. The work done by the fluid on the black hole horizon is much smaller than the change in the energy of black hole, $\Delta w_{\rm B} \ll \Delta r_{\rm B}$. This indicates that the energy increase of black hole comes mainly from the thermal energy flowing into the black hole through its outer horizon. The problem of accreting the pressureless fluid into Kiselev black hole is discussed. One can find that there are the zero gravity surfaces between the black hole horizon and cosmic horizon of Kiselev spacetime, the radii of which increase with the decrease of $w_{\rm q}$. For $w_{\rm q}=-\dfrac{2}{3}$ and $w_{\rm q}=-1$, the accretion radii of Kiselev black hole are respectively determined to be $r_0 \approx 1.6 \times 10^{4}$ (l.y.) and $r_0 \approx 1.2 \times 10^{6}$ (l.y.). On condition that the accretion energy density is proportional to the background energy density, $\rho_{\rm {mB}} = \eta_{\rm B} \rho_{\rm B}$ with $\eta_{\rm B}$ being a proportionality coefficient, the accretion rate of Kiselev black hole is given as $\chi_{\rm B} = - \dfrac{3 \eta_{\rm B} w_{\rm q}} {2} \left(\dfrac{2M}{\lambda}\right)^{-(3w_{\rm q} + 1)}$. For $w_{\rm q}= - 2/3 $, the accretion rate of the black hole takes its maximum $\chi_{\rm max} \approx 1.2 \times 10^{- 6} \eta_{\rm B} $; for $w_{\rm q}= - 1$, the accretion rate takes its minimum $\chi_ {\rm {min}} \approx 1.2 \times 10 ^ {-8} \eta_{\rm B} $. On the assumption that $\eta_{\rm B}$ changes slowly enough with $w_{\rm q}$, the accretion rate of Kiselev black hole increases with the increase of $w_{\rm q}$.
      通信作者: 魏益焕, yihuanwei@126.com
    • 基金项目: 国家自然科学基金(批准号: 11504027)资助的课题.
      Corresponding author: Wei Yi-Huan, yihuanwei@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504027).
    [1]

    Riess A G, Filippenko A V, Challis P, et al. 1998 Astron. J. 116 1009Google Scholar

    [2]

    Perlmutter S, Aldering G, Goldhaber G, et al. 1999 Astrophys. J. 517 565Google Scholar

    [3]

    Garnavich P M, Kirshner R P, Challis P, et al. 1998 Astrophys. J. 493 L53Google Scholar

    [4]

    Kiselev V V 2003 Class. Quant. Grav. 20 1187Google Scholar

    [5]

    Majeed B, Jamil M, Pradhan P 2015 Adv. High Energy Phys. 2015 124910Google Scholar

    [6]

    Azreg-Aïnou M, Rodrigues M E 2013 J. High Energy Phys. 2013 146Google Scholar

    [7]

    Bondi H, Hoyle F 1944 Mon. Not. Roy. Astron. Soc. 104 273Google Scholar

    [8]

    Bondi H 1952 Mon. Not. Roy. Astron. Soc. 112 195Google Scholar

    [9]

    Michel F C 1972 Astrophys. Space Sci. 15 153Google Scholar

    [10]

    Begelman M 1978 Astron. Astrophys. 70 583

    [11]

    Malec E 1999 Phys. Rev. D 60 104043Google Scholar

    [12]

    Jawad A, Shahzad M U 2016 Eur. Phys. J. C 76 123Google Scholar

    [13]

    Karkowski J, Malec E 2013 Phys. Rev. D 87 044007Google Scholar

    [14]

    Babichev E, Dokuchaev V, Eroshenko Y 2004 Phys. Rev. Lett. 93 021102Google Scholar

    [15]

    Babichev E, Dokuchaev V, Eroshenko Y 2005 J. Exp. Theor. Phys. 100 528Google Scholar

    [16]

    Jamil M, Rashid M A, Qadir A 2008 Eur. Phys. J. C 58 325Google Scholar

    [17]

    Gao C, Chen X, Faraoni V, Shen Y G 2008 Phys. Rev. D 78 024008Google Scholar

    [18]

    Babichev E, Chernov S, Dokuchaev V, Eroshenko Y 2008 Phys. Rev. D 78 104027Google Scholar

    [19]

    Kumar R, Ghosh S G 2017 Eur. Phys. J. C 77 577Google Scholar

    [20]

    Paik B, Gangopadhyay S 2018 Int. J. Mod. Phys. A 33 1850084Google Scholar

    [21]

    Ahmed A K, Camci U, Jamil M 2016 Class. Quantum Grav. 33 215012Google Scholar

    [22]

    Sharif M, Iftikhar S 2016 Eur. Phys. J. C 76 147Google Scholar

    [23]

    Jiao L, Yang R J 2017 J. Cosmol. Astropart. Phys. 9 023

    [24]

    Jiao L, Yang R J 2017 Eur. Phys. J. C 77 356Google Scholar

    [25]

    Sahoo P K, Mahanta K L, Goit D, Sihna A K, Xulu S S, Das U R, Prasad A, Prasad R 2015 Chin. Phys. Lett. 32 020402Google Scholar

  • 图 1  (a)黑洞视界做功示意图; (b)宇宙视界做功示意图; 其中BHH和CH分别表示黑洞视界和宇宙视界, $ \Delta r_{\rm {B, C}} $表示黑洞视界和宇宙视界半径的微小变化, 虚线表示变化后的黑洞视界和宇宙视界

    Fig. 1.  (a) Doing work of black hole horizon; (b) doing work of cosmic horizon. BHH and CH stand for the black hole horizon and the cosmic horizon, respectively. $ \Delta r_{\rm {B, C}} $ denotes a small change of the radii of black hole horizon and cosmic horizon. The dotted lines represent the changed black hole horizon and the changed cosmic horizon.

    图 2  $M=10^{-2}$ l.y.和$\lambda=1.378\times $1010 l.y.条件下的$r_0\text{-}w_{\rm q}$曲线

    Fig. 2.  The $r_0 \text{-} w_{\rm q} $ curve ($M = 10 ^{-2}$ l.y. and $\lambda = 1.378 \;\times$ $ 10 ^{10}$ l.y.).

    图 3  $M = 10 ^{-2}$ l.y.和$\lambda = 1.378 \times 10 ^{10}$ l.y.条件下的$f_0\text{-}w_{\rm q} $曲线, 对于$w_{\rm q} =-\frac{2}{3}$$ -1$, 分别有$f_{0}\approx $0.999998和0.99999998

    Fig. 3.  The $f_0\text{-}w_{\rm q}$ curve ($M = 10 ^{-2}$ l.y. and $\lambda = 1.378 \; \times$ $10 ^{10}$ l.y.). For $w_{\rm q}=-\frac{2}{3}$ and $ -1$, the metric function $f_{0}\approx 0.999998$ and 0.99999998, respectively.

    图 4  黑洞吸积率$\chi_{\rm B}$ (单位$\eta_{\rm B}$)与$w_{\rm q}$的关系图(M =$ 10 ^{-2}$ l.y.和$\lambda = 1.378 \times 10 ^{10}$ l.y.)

    Fig. 4.  Relationship between black hole accretion rate $\chi_{\rm B} $ (unit $\eta_{\rm B}$) and $ w_{\rm q}$ ($M = 10 ^{-2}\; {\rm l.y.}$ and $\lambda = 1.378 \; \times $1010 l.y.).

    表 1  黑洞视界附近背景时空的能量密度

    Table 1.  Energy density of spacetime near the horizon of black hole

    $w_{\rm q}$
    $-2/3$ $-0.8$ $-0.9$ $-0.99$ $-0.999$ $-0.9999$
    $\rho_{\rm B}\left(\dfrac{3} {8{\text{π}} \lambda^2}\right)$ $4.59333\times10^{11}$ $1.01396\times10^7$ $3204.12$ $2.24275$ 1.08413 1.00811
    下载: 导出CSV
    Baidu
  • [1]

    Riess A G, Filippenko A V, Challis P, et al. 1998 Astron. J. 116 1009Google Scholar

    [2]

    Perlmutter S, Aldering G, Goldhaber G, et al. 1999 Astrophys. J. 517 565Google Scholar

    [3]

    Garnavich P M, Kirshner R P, Challis P, et al. 1998 Astrophys. J. 493 L53Google Scholar

    [4]

    Kiselev V V 2003 Class. Quant. Grav. 20 1187Google Scholar

    [5]

    Majeed B, Jamil M, Pradhan P 2015 Adv. High Energy Phys. 2015 124910Google Scholar

    [6]

    Azreg-Aïnou M, Rodrigues M E 2013 J. High Energy Phys. 2013 146Google Scholar

    [7]

    Bondi H, Hoyle F 1944 Mon. Not. Roy. Astron. Soc. 104 273Google Scholar

    [8]

    Bondi H 1952 Mon. Not. Roy. Astron. Soc. 112 195Google Scholar

    [9]

    Michel F C 1972 Astrophys. Space Sci. 15 153Google Scholar

    [10]

    Begelman M 1978 Astron. Astrophys. 70 583

    [11]

    Malec E 1999 Phys. Rev. D 60 104043Google Scholar

    [12]

    Jawad A, Shahzad M U 2016 Eur. Phys. J. C 76 123Google Scholar

    [13]

    Karkowski J, Malec E 2013 Phys. Rev. D 87 044007Google Scholar

    [14]

    Babichev E, Dokuchaev V, Eroshenko Y 2004 Phys. Rev. Lett. 93 021102Google Scholar

    [15]

    Babichev E, Dokuchaev V, Eroshenko Y 2005 J. Exp. Theor. Phys. 100 528Google Scholar

    [16]

    Jamil M, Rashid M A, Qadir A 2008 Eur. Phys. J. C 58 325Google Scholar

    [17]

    Gao C, Chen X, Faraoni V, Shen Y G 2008 Phys. Rev. D 78 024008Google Scholar

    [18]

    Babichev E, Chernov S, Dokuchaev V, Eroshenko Y 2008 Phys. Rev. D 78 104027Google Scholar

    [19]

    Kumar R, Ghosh S G 2017 Eur. Phys. J. C 77 577Google Scholar

    [20]

    Paik B, Gangopadhyay S 2018 Int. J. Mod. Phys. A 33 1850084Google Scholar

    [21]

    Ahmed A K, Camci U, Jamil M 2016 Class. Quantum Grav. 33 215012Google Scholar

    [22]

    Sharif M, Iftikhar S 2016 Eur. Phys. J. C 76 147Google Scholar

    [23]

    Jiao L, Yang R J 2017 J. Cosmol. Astropart. Phys. 9 023

    [24]

    Jiao L, Yang R J 2017 Eur. Phys. J. C 77 356Google Scholar

    [25]

    Sahoo P K, Mahanta K L, Goit D, Sihna A K, Xulu S S, Das U R, Prasad A, Prasad R 2015 Chin. Phys. Lett. 32 020402Google Scholar

  • [1] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质.  , 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] 胡敏丽, 房凡, 樊群超, 范志祥, 李会东, 付佳, 谢锋. NO+离子系统热力学性质的理论研究.  , 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [3] 朱诚, 陈仙辉, 王城, 宋明, 夏维东. 氩-碳-硅等离子体热力学性质和输运系数计算.  , 2023, 72(12): 125202. doi: 10.7498/aps.72.20222390
    [4] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究.  , 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [5] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质.  , 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质.  , 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [7] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算.  , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [9] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质.  , 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [10] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [11] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [12] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究.  , 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [13] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究.  , 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [14] 李 权, 朱正和. AuZn和AuAl分子基态与低激发态的势能函数与热力学性质.  , 2008, 57(6): 3419-3424. doi: 10.7498/aps.57.3419
    [15] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [16] 宋海峰, 刘海风. 金属铍热力学性质的理论研究.  , 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [17] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响.  , 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [18] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质.  , 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [19] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质.  , 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [20] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质.  , 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
计量
  • 文章访问数:  6868
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-01-02
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map