Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preliminary study on similarity of glow discharges in scale-down gaps

Fu Yang-Yang Luo Hai-Yun Zou Xiao-Bing Liu Kai Wang Xin-Xin

Citation:

Preliminary study on similarity of glow discharges in scale-down gaps

Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to investigate the validity of the scale-down experiment on gas discharge, the discharge in argon at low pressure is numerically simulated with scale-down discharge gap based on the conjecture of discharge similarity that if the product of gas pressure p and gap length d is kept constant, p1d1=p2d2, and the spatial distributions of the reduced field E/p along these two gaps are the same, the gas discharges in these two discharge gaps would be similar. In the simulation, three scale-down discharge gaps are used. Gap A is 30 mm long and works at a pressure of 1 Torr (1 Torr=133.322 Pa). Gap B is 15 mm long at 2 Torr and gap C 10 mm long at 3 Torr. The results show that the discharges in these three gaps are glow discharges with a cathode fall layer. The values of thickness of the cathode fall layer, dC, for gaps A, B and C are 2.71 mm, 1.35 mm and 0.87 mm, respectively, which corresponds to more or less the same value of pdC≈2.70 Torr·mm that is close to the lowest point of Paschen curve of argon where pd≈2.86 Torr·mm. The proportionalities of the parameters (working voltage, electric field, current density, electron density and ion density) between the discharges in the scale-down gaps are found to be in good agreement with those determined by the discharge similarity. It is concluded that the conjecture of discharge similarity is correct for the glow discharge in argon in the scale-down gap.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51377095, 51107067).
    [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Roth J R 2001 Industrial Plasma Engineering Volume II: Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [3]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [4]

    Bucalossi J, Brosset C, Garnier D, Grisolia C, Grosman A, Martin G, Laurent F S 2003 J. Nucl. Mater. 313-316 263

    [5]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [6]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [7]

    R Aymar, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519

    [8]

    Osmokrovic P, Zivic T, Loncar B, Vasic A 2007 IEEE Trans. on Plasma Science 35 100

    [9]

    Dekic S, Osmokrovic P, Vujisic M, Stankovic K 2010 IEEE Trans. on Dielectr. Electr. Insulat. 17 1185

    [10]

    Townsend J S 1915 Electricity in Gases (Oxford: ClarendonPress) p365

    [11]

    Paschen F 1889 Wiedemann Annalen der Physik und Chemie 37 69

    [12]

    Holm R 1924 Phys. Z. 25 497

    [13]

    Margenau H 1948 Phys. Rev. 73 197

    [14]

    Jones F L, Morgan G D 1951 Proc. Phys. Soc. Lond. B 64 560

    [15]

    Janasek D, Franzke J, Manz A 2006 Nature 442 374

    [16]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海: 复旦大学出版社)第75–80页]

    [17]

    Jong W S, Mark J K 1994 J. Appl. Phys. 75 1883

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Kolokolov N B, Blagoev A B 1993 Phys. Usp. 36 152

    [20]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [21]

    Pitchford L C, Phelps A V 1982 Phys. Rev. A 25 540

    [22]

    Lieberman M A, Lichtenberg A J (Translated by Pu Y K) 2007 Principles of Plasma Discharge and Materials Processing ( Beijing: Science Press) p421 ( in Chinese) [迈克尔·A 力伯曼, 阿伦·J 里登伯格著, 蒲以康译 2007 等离子体放电原理与材料处理(北京: 科学出版社)第421 页]

    [23]

    Yue Q Y, Jin H 1988 Radiation Protection 8 401 (in Chinese) [岳清宇, 金花 1988 辐射防护 8 401]

    [24]

    L B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [25]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.) pp275-301

    [26]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 [邵先军, 马跃, 李娅西, 张冠军 2010 59 8747]

    [27]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [28]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [29]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [30]

    Montie T C, Wintenberg K K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [31]

    Bogaerts A, Neyts E, Gijbels R, van der Mullen J 2002 Spectrochim. Acta B 57 609

    [32]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

  • [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Roth J R 2001 Industrial Plasma Engineering Volume II: Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [3]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [4]

    Bucalossi J, Brosset C, Garnier D, Grisolia C, Grosman A, Martin G, Laurent F S 2003 J. Nucl. Mater. 313-316 263

    [5]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [6]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [7]

    R Aymar, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519

    [8]

    Osmokrovic P, Zivic T, Loncar B, Vasic A 2007 IEEE Trans. on Plasma Science 35 100

    [9]

    Dekic S, Osmokrovic P, Vujisic M, Stankovic K 2010 IEEE Trans. on Dielectr. Electr. Insulat. 17 1185

    [10]

    Townsend J S 1915 Electricity in Gases (Oxford: ClarendonPress) p365

    [11]

    Paschen F 1889 Wiedemann Annalen der Physik und Chemie 37 69

    [12]

    Holm R 1924 Phys. Z. 25 497

    [13]

    Margenau H 1948 Phys. Rev. 73 197

    [14]

    Jones F L, Morgan G D 1951 Proc. Phys. Soc. Lond. B 64 560

    [15]

    Janasek D, Franzke J, Manz A 2006 Nature 442 374

    [16]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海: 复旦大学出版社)第75–80页]

    [17]

    Jong W S, Mark J K 1994 J. Appl. Phys. 75 1883

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Kolokolov N B, Blagoev A B 1993 Phys. Usp. 36 152

    [20]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [21]

    Pitchford L C, Phelps A V 1982 Phys. Rev. A 25 540

    [22]

    Lieberman M A, Lichtenberg A J (Translated by Pu Y K) 2007 Principles of Plasma Discharge and Materials Processing ( Beijing: Science Press) p421 ( in Chinese) [迈克尔·A 力伯曼, 阿伦·J 里登伯格著, 蒲以康译 2007 等离子体放电原理与材料处理(北京: 科学出版社)第421 页]

    [23]

    Yue Q Y, Jin H 1988 Radiation Protection 8 401 (in Chinese) [岳清宇, 金花 1988 辐射防护 8 401]

    [24]

    L B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [25]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.) pp275-301

    [26]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 [邵先军, 马跃, 李娅西, 张冠军 2010 59 8747]

    [27]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [28]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [29]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [30]

    Montie T C, Wintenberg K K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [31]

    Bogaerts A, Neyts E, Gijbels R, van der Mullen J 2002 Spectrochim. Acta B 57 609

    [32]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

  • [1] Wang Zhen, Zhao Zhi-Hang, Fu Yang-Yang. Numerical simulation study on microdischarge via a unified fluid model. Acta Physica Sinica, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [2] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [3] Li Xue-Chen, Geng Jin-Ling, Jia Peng-Ying, Wu Kai-Yue, Jia Bo-Yu, Kang Peng-Cheng. Rotating characteristics of glow discharge filament on liquid electrode surface. Acta Physica Sinica, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [4] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [6] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [7] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration. Acta Physica Sinica, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [8] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [9] Yu Zhe, Zhang Zhi-Tao, Yu Qing-Xuan, Xu Shao-Jie, Yao Jing, Bai Min-Dong, Tian Yi-Ping, Liu Kai-Ying. Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air. Acta Physica Sinica, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [10] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [11] Yan Jian-Cheng, Tang Yong-Jian, Li Ping, He Zhi-Bing, Zhang Ying. Influence of pressure on structure and properties of Si-doped glow discharge polymer film. Acta Physica Sinica, 2011, 60(6): 066803. doi: 10.7498/aps.60.066803
    [12] Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Zhang Ying, Tang Yong-Jian, Wei Jian-Jun. Influence of RF power on the structure and properties of glow discharge polymer. Acta Physica Sinica, 2011, 60(3): 036501. doi: 10.7498/aps.60.036501
    [13] Zhang Ying, He Zhi-Bing, Li Ping, Yan Jian-Cheng. Thermal stability of Si-doped glow discharge polymer films. Acta Physica Sinica, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [14] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [16] Zhang Lian-Zhu, Gao Shu-Xia. Effect of adding hydrogen to a nitrogen glow discharge on electron behavior. Acta Physica Sinica, 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [17] Qi Bing, Ren Chun-Sheng, Ma Teng-Cai, Wang You-Nian, Wang De-Zhen. Stabilization of the multi-pin to multi-sphere plane negative corona discharge. Acta Physica Sinica, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [18] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [19] Wang Xin-Xin, Lu Ming-Ze, Pu Yi-Kang. Possibility of atmospheric pressure glow discharge in air. Acta Physica Sinica, 2002, 51(12): 2778-2785. doi: 10.7498/aps.51.2778
    [20] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
Metrics
  • Abstract views:  6086
  • PDF Downloads:  413
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2013
  • Accepted Date:  14 June 2013
  • Published Online:  05 October 2013

/

返回文章
返回
Baidu
map