搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单向注入垂直腔面发射激光器系统的密钥分发

张浩 郭星星 项水英

引用本文:
Citation:

基于单向注入垂直腔面发射激光器系统的密钥分发

张浩, 郭星星, 项水英

Key distribution based on unidirectional injection of vertical cavity surface emitting laser system

Zhang Hao, Guo Xing-Xing, Xiang Shui-Ying
PDF
导出引用
  • 随机源对于信息理论安全的密钥分发至关重要,本文提出了一种基于单向注入垂直腔面发射激光器系统的密钥分发方案.首先基于单向注入的方式产生无时延特征的激光混沌信号,并通过单向注入驱动两个从激光器产生带宽增强的混沌同步信号.然后经过采样、量化以及异或等后处理,生成密钥流.数值仿真结果表明,在单阈值情况下,合法用户之间的误比特率低至1%左右,合法用户与窃听者之间的误比特率都高于10%;在双阈值情况下,误比特率可以低至10-6.最后,对生成的密钥流进行了NIST随机性测试.该方案有效地增强了密钥分发的安全性.
    Random source is important for the security of key distribution. In this paper, a novel secure key distribution scheme based on unidirectional injection of vertical cavity surface emitting laser (VCSEL) system is proposed. In the proposed scheme, a chaotic signal without time delay signature is generated by a VCSEL subject to unidirectional optical injection, which is regarded as a master laser. The chaotic signal generated by the master VCSEL is further injected into two slave VCSELs to obtain synchronized bandwidth-enhanced chaotic signals. After that, by sampling, quantizing and XOR operation on the two synchronized chaotic signals, two key streams can be obtained. Based on the well-known spin-flip model, the time delay signature of chaotic signals generated by master VCSEL and the synchronization performance between the master VCSELs and two slave VCSELs are numerically investigated in detail. It is shown that by the unidirectional injection, the chaotic outputs can be achieved in the master VCSEL in a wide range of frequency detuning and coupling strength. More importantly, no time delay signature can be observed in the auto correlation function of the chaotic intensity time series generated by the master VCSEL. Besides, we find that high quality synchronization is achieved between the bandwidth-enhanced chaotic signals generated by two slave VCSELs under the common driving of master VCSEL. The synchronization coefficient between two slave VCSELs increases up to 0.99, and the synchronization coefficient between master VCSEL and salve VCSEL is only 0.74. Note that such a high quality synchronization between two slave VCSELs while relatively low quality synchronization between the master and slave VCSEL is conducible to ensuring the security of key distribution. In addition, the effects of tunable parameters on key bit error rate are considered, and two quantization methods are employed for comparison. Numerical simulation results show that the key bit error rate between two legitimate users is as low as 1%, and the key bit error rate between legitimate user and eavesdropper is higher than 10% in the single-threshold case; the bit error rate can even be as low as 10-6 in the double-threshold case. The influence of parameter mismatch on key bit error rate is also discussed, and it is suggested that two salve VCSELs should be finely matched to ensure low bit error rate. Finally, NIST randomness test is performed for the generated key streams. Hence, the proposed scheme enhances the security of key distribution, which is valuable for further developing the chaos communication systems.
      通信作者: 项水英, jxxsy@126.com
    • 基金项目: 国家自然科学基金(批准号:61674119)和国家自然科学基金青年科学基金(批准号:61306061)资助的课题.
      Corresponding author: Xiang Shui-Ying, jxxsy@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61674119) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306061).
    [1]

    Diffie W, Hellman M 1976 IEEE Trans. Inf. Theory 22 644

    [2]

    Huang D, Huang P, Lin D, Wang C, Zeng G 2015 Opt. Lett. 40 3695

    [3]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [4]

    Guo X X, Xiang S Y, Zhang Y H, Wen A J, Hao Y 2018 IEEE J. Quantum Electron. 54 2000308

    [5]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [6]

    Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H, Uchida A 2012 Phys. Rev. Lett. 108 070602

    [7]

    Koizumi H, Morikatsu S, Aida H, Nozawa T, Kakesu I, Uchida A, Yoshimura K, Muramatsu J, Davis P 2013 Opt. Express 211 7869

    [8]

    Wang L, Guo Y, Sun Y, Zhao Q, Lan D, Wang Y, Wang A 2015 IEEE J. Quantum Electron. 51 8000208

    [9]

    Jiang N, Xue C, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [10]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 141 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 60 141]

    [11]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 118 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 65 118]

    [12]

    Jiang N, Pan W, Yan L, Luo B, Xiang S, Yang L, Zheng D, Li N 2011 IEEE J. Sel. Top. Quantum Electron. 17 1220

    [13]

    Argyris A, Pikasis E, Syvridis D 2016 J. Lightwave Technol. 34 5325

    [14]

    Martin-Regalado J, Prati F, Miguel M San, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [15]

    Zhang H, Xiang S Y, Zhang Y H, Guo X X 2017 Appl. Opt. 56 6728

    [16]

    Xiang S Y, Zhang H, Guo X X, Li J F, Wen A J, Pan W, Hao Y 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700207

    [17]

    Hong Y, Paul J, Spencer P S, Shore K A 2006 JOSA B 23 2285

    [18]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [19]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Davis P 2008 Nat. Photonics 2 728

    [20]

    Buskila O, Eyal A, Shtaif M 2008 Opt. Express 16 3383

    [21]

    Xue C, Jiang N, Qiu K, Lv Y 2015 Opt. Express 23 14510

    [22]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [23]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

  • [1]

    Diffie W, Hellman M 1976 IEEE Trans. Inf. Theory 22 644

    [2]

    Huang D, Huang P, Lin D, Wang C, Zeng G 2015 Opt. Lett. 40 3695

    [3]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [4]

    Guo X X, Xiang S Y, Zhang Y H, Wen A J, Hao Y 2018 IEEE J. Quantum Electron. 54 2000308

    [5]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [6]

    Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H, Uchida A 2012 Phys. Rev. Lett. 108 070602

    [7]

    Koizumi H, Morikatsu S, Aida H, Nozawa T, Kakesu I, Uchida A, Yoshimura K, Muramatsu J, Davis P 2013 Opt. Express 211 7869

    [8]

    Wang L, Guo Y, Sun Y, Zhao Q, Lan D, Wang Y, Wang A 2015 IEEE J. Quantum Electron. 51 8000208

    [9]

    Jiang N, Xue C, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [10]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 141 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 60 141]

    [11]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 118 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 65 118]

    [12]

    Jiang N, Pan W, Yan L, Luo B, Xiang S, Yang L, Zheng D, Li N 2011 IEEE J. Sel. Top. Quantum Electron. 17 1220

    [13]

    Argyris A, Pikasis E, Syvridis D 2016 J. Lightwave Technol. 34 5325

    [14]

    Martin-Regalado J, Prati F, Miguel M San, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [15]

    Zhang H, Xiang S Y, Zhang Y H, Guo X X 2017 Appl. Opt. 56 6728

    [16]

    Xiang S Y, Zhang H, Guo X X, Li J F, Wen A J, Pan W, Hao Y 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700207

    [17]

    Hong Y, Paul J, Spencer P S, Shore K A 2006 JOSA B 23 2285

    [18]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [19]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Davis P 2008 Nat. Photonics 2 728

    [20]

    Buskila O, Eyal A, Shtaif M 2008 Opt. Express 16 3383

    [21]

    Xue C, Jiang N, Qiu K, Lv Y 2015 Opt. Express 23 14510

    [22]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [23]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

  • [1] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究.  , 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [2] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [3] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号.  , 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [4] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析.  , 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [5] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究.  , 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] 李雄杰, 周东华. 一种基于强跟踪滤波的混沌保密通信方法.  , 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [7] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信.  , 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [8] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信.  , 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [9] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究.  , 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [10] 闵富红, 王恩荣. 超混沌Qi系统的错位投影同步及其在保密通信中的应用.  , 2010, 59(11): 7657-7662. doi: 10.7498/aps.59.7657
    [11] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究.  , 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [12] 颜森林. 光纤混沌双芯双向保密通信系统研究.  , 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [13] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性.  , 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [14] 张 勇, 陈天麒, 陈 滨. 跃变参数混沌同步及其应用.  , 2007, 56(1): 56-66. doi: 10.7498/aps.56.56
    [15] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响.  , 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [16] 孙 琳, 姜德平. 驱动函数切换调制实现超混沌数字保密通信.  , 2006, 55(7): 3283-3288. doi: 10.7498/aps.55.3283
    [17] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用.  , 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [18] 李国辉, 徐得名, 周世平. 基于状态观测器的参数调制混沌数字通信.  , 2004, 53(3): 706-709. doi: 10.7498/aps.53.706
    [19] 李建芬, 李 农, 林 辉. 适合传输快变信息信号的混沌调制保密通信.  , 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [20] 张家树, 肖先赐. 基于广义混沌映射切换的混沌同步保密通信.  , 2001, 50(11): 2121-2125. doi: 10.7498/aps.50.2121
计量
  • 文章访问数:  6321
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-06-23
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map