搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含两能级原子系综的复合光力系统中的和边带效应

廖庆洪 唐志安 敖佳文

引用本文:
Citation:

含两能级原子系综的复合光力系统中的和边带效应

廖庆洪, 唐志安, 敖佳文

Sum Sideband Effect in Hybrid Optomechanical System with Two-level Atom Ensemble

Liao Qinghong, Tang Zhian, Ao Jiawen
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 腔光力学作为纳米光子学与量子力学的交叉学科,为研究微腔内光子与机械模式的声子之间的光力耦合作用提供了一个独特的平台。其在量子物理领域存在广泛的潜在应用,已成为当今物理研究的前沿课题。本文提出了一种利用两能级原子系综增强和边带产生的理论方案。通过引入两能级原子介质,研究了原子系综的失谐频率对于和边带产生效率的影响。结果表明不论在原子红失谐还是蓝失谐下都可以使和边带的生成效率得到显著增强,并且对于红失谐状态下的依赖性更大,其增强的效果更加明显。此外,我们还考虑了泵浦功率的影响,通过选择适当的泵浦功率可以有效的增强输出和边带信号的强度。另外,讨论了腔-原子耦合强度与原子衰减率对于和边带信号传输特性的影响,通过测量和边带频率谱的峰值,进而检测出腔与原子间的耦合强度。这为腔-原子耦合强度的精密测量提供了一种简单便捷的方法,同时也为和边带信号传输的调控提供有益的借鉴。
    Cavity optomechanics, as a cross-discipline between nanophotonics and quantum mechanics, provides a unique platform for the research of optomechanical coupling between photons in microcavities and phonons from mechanical modes. It has a wide range of potential applications in the field of quantum physics and has become a hot topic nowadays. A theoretical scheme to enhance the sum sideband generation (SSG) via two-level atom ensemble is proposed. The effect of the atomic ensemble’s detuning frequency on the efficiency of the SSG is considered by introducing a two-level atom medium. The results indicate that the efficiency of the sum sideband generation can be significantly enhanced under either red or blue detuning of the atoms, with a greater dependence and more pronounced enhancement under red detuning. In addition, we also consider the effect of pump power, which can effectively enhance the intensity of the output signal by selecting the appropriate pump power. More interestingly, the sensitivity of SSG to atomic detuning also indicates that precise control of the atomic detuning frequency can enable fine-tuning of the SSG process. Furthermore, the cavity-atom coupling strength and atom decay rate are discussed for the transmission characteristics of the sum sideband signals. It was found that the efficiency of SSG can be effectively adjusted by the cavity-atom coupling strength and atom decay rate. The results show that the efficiency of SSG can be significantly improved by optimizing system parameters. The enhanced SSG method may have potential application prospects in realizing the measurement of high-precision weak forces and on-chip manipulation of light propagation.
  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014Rev. Mod. Phys. 86 1391

    [2]

    Scully M O, Zubairy M S 1997Quantum Optics (Cambridge: Cambridge University Press) pp1-560

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012Phys. Today 65 29

    [4]

    Forbes A, Dudley A, McLaren M 2016Adv. Opt. Photonics 8 200

    [5]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020Acta Phys. Sin. 64 164211(陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2020 64 164211)

    [6]

    Xiong H, Wu Y 2018Appl. Phys. Rev. 5 56

    [7]

    Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018Commun. Phys. 1 43

    [8]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010Science 330 1520

    [9]

    He Q 2019 Study on Induced Transparency and Related Phenomena in Hybrid Optomechanical Systems: [Ph.D. Dissertation] Huazhong University of Science and Technology (贺庆2019《混合腔光力系统诱导透明及其相关现象的研究》:[博士学位论文] 华中科技大学)

    [10]

    Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014Phys. Rev. A 90 023817

    [11]

    Kong C, Li S, You C, Xiong H, Wu Y 2018Sci. Rep. 8 1060

    [12]

    Shen R C, Li J, Fan Z Y, Wang Y P,You J Q Phys. Rev. Lett. 2022129 123601

    [13]

    Xu Y, Liu J Y, Liu W, Xiao Y F 2021Phys. Rev. A 103 053501

    [14]

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 128(刘妮, 马硕, 梁九卿2023 72 128)

    [15]

    Li J, Wang Y P, You J Q, Zhu S Y 2023Natl. Sci. Rev 10 nwac247

    [16]

    Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012Phys. Rev. A 86 013815

    [17]

    Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014Ann. Phys. 349 43

    [18]

    Liu J H, Yu Y F, Zhang Z M 2019Opt. Express 27 15382

    [19]

    Luo J W, Wu W D, Miao Q, Wei T L 2020Acta Phys. Sin. 69 054203(罗均文, 吴德伟, 苗强, 魏天丽2020 69 054203)

    [20]

    Peng J X, Chen Z, Yuan Q Z, Feng X L 2019Phys. Rev. A 99 043817

    [21]

    Han Y, Cheng J, Zhou L 2011J. Phys. B: At. Mol. Opt. Phys. 44 165505

    [22]

    Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019J. Phys. B: At. Mol. Opt. Phys. 52 105502

    [23]

    Han C M, Wang X, Chen H, Li H R 2020Opt. Commun. 456 124605

    [24]

    Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019Acta Phys. Sin. 68 54201(谷开慧, 严冬, 张孟龙, 殷景志, 付长宝2019 68 54201)

    [25]

    Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016Chin. J. Lasers 43 266(廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗2016中国激光43 266)

    [26]

    Asjad M, Saif F 2014Optik 125 5455

    [27]

    Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018Ann. Phys. 530 1800228

    [28]

    Chen S, Jing J 2010Class. Quantum Grav., 27 225006

    [29]

    Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006Phys. Rev. Lett. 97 087203

    [30]

    Michimura Y, Komori K. 2020Eur. Phys. J. D 74 1

    [31]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013Science 342 710

    [32]

    He Y 2016Phys. Rev. A 94 063804

    [33]

    Yasir K A, Liu W M 2016Sci. Rep. 6 22651

    [34]

    Akram M J, Ghafoor F, Khan M M, Saif F 2017Phys. Rev. A 95 023810

    [35]

    Liu L W, Gengzang D J, An X J, Wang P Y 2018Chin. Phys. B 27 034205

    [36]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016Sci. Rep. 6 22920

    [37]

    Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019Phys. Rev. A 100 023820

    [38]

    Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021Phys. Rev. A 104 033708

    [39]

    Nagy D, Szirmai G, Domokos P 2013Eur. Phys. J. D 67 1

    [40]

    Morsch O, Oberthaler M 2006Rev. Mod. Phys. 78 179

    [41]

    Li Ming, Chen Cui-Ling 2014Acta Phys. Sin. 63 043201

    [42]

    Su X, Huang Y M, Xiong H 2019IEEE Access 7 133832

    [43]

    Xiong H, Si L G, Lü X Y, Wu Y 2016Opt. Express 24 5773

    [44]

    Xiong H, Fan Y W, Yang X, Wu Y 2016Appl. Phys. Lett. 109

    [45]

    Liu S, Liu B, Yang W X 2019Opt. Express 27 3909

    [46]

    Wang X Y, Si L G, Lu X H, Wu Y 2019Opt. Express 27 29297

    [47]

    Xiong H, Huang Y M, Wu Y 2021Phys. Rev. A 103 043506

    [48]

    Lu X H, Si L G, Wang X Y, Wu Y 2021Opt. Express 29 4875

    [49]

    Liao Q, Ao J, Song M, Qiu H 2023Opt. Express 31 27508

    [50]

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023Acta Phys. Sin. 72 094203(王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬2023 72 094203)

    [51]

    Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024OPT LASER TECHNOL 168 109934

    [52]

    Singh S K, Peng J X, Asjad M, Mazaheri M 2021J. Phys. B: At. Mol. Opt. Phys. 54 215502

    [53]

    Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019Phys. Rev. A 99 063810

    [54]

    Zeng R P, Zhang S, Wu C W, Wu W, Chen P X 2015J. Opt. Soc. Am. B: Opt. Phys. 32 2314

    [55]

    Breyer D, Bienert M 2012Phys. Rev. A 86 053819

  • [1] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , doi: 10.7498/aps.72.20230663
    [2] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析.  , doi: 10.7498/aps.71.20220691
    [3] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质.  , doi: 10.7498/aps.68.20190347
    [4] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性.  , doi: 10.7498/aps.68.20190205
    [5] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究.  , doi: 10.7498/aps.67.20172467
    [6] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , doi: 10.7498/aps.65.194205
    [7] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变.  , doi: 10.7498/aps.64.130505
    [8] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量.  , doi: 10.7498/aps.64.164211
    [9] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究.  , doi: 10.7498/aps.63.026201
    [10] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究.  , doi: 10.7498/aps.61.084214
    [11] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性.  , doi: 10.7498/aps.61.060301
    [12] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度.  , doi: 10.7498/aps.56.1906
    [13] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用.  , doi: 10.7498/aps.53.620
    [14] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究.  , doi: 10.7498/aps.51.2623
    [15] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响.  , doi: 10.7498/aps.50.1279
    [16] 冯勋立, 何林生. 两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化.  , doi: 10.7498/aps.46.1926
    [17] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应.  , doi: 10.7498/aps.46.1718
    [18] 刘正东. 四能级原子与双模腔场相互作用中的非线性效应.  , doi: 10.7498/aps.38.98
    [19] 杜功焕. 非线性有限束光声效应理论.  , doi: 10.7498/aps.37.769
    [20] 罗诗裕, 刘曾荣, 邵明珠. 半导体光磁电效应的非线性特征.  , doi: 10.7498/aps.36.547
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map