-
Cavity optomechanics, as a cross-discipline between nanophotonics and quantum mechanics, provides a unique platform for the research of optomechanical coupling between photons in microcavities and phonons from mechanical modes. It has a wide range of potential applications in the field of quantum physics and has become a hot topic nowadays. A theoretical scheme to enhance the sum sideband generation (SSG) via two-level atom ensemble is proposed. The effect of the atomic ensemble’s detuning frequency on the efficiency of the SSG is considered by introducing a two-level atom medium. The results indicate that the efficiency of the sum sideband generation can be significantly enhanced under either red or blue detuning of the atoms, with a greater dependence and more pronounced enhancement under red detuning. In addition, we also consider the effect of pump power, which can effectively enhance the intensity of the output signal by selecting the appropriate pump power. More interestingly, the sensitivity of SSG to atomic detuning also indicates that precise control of the atomic detuning frequency can enable fine-tuning of the SSG process. Furthermore, the cavity-atom coupling strength and atom decay rate are discussed for the transmission characteristics of the sum sideband signals. It was found that the efficiency of SSG can be effectively adjusted by the cavity-atom coupling strength and atom decay rate. The results show that the efficiency of SSG can be significantly improved by optimizing system parameters. The enhanced SSG method may have potential application prospects in realizing the measurement of high-precision weak forces and on-chip manipulation of light propagation.
-
Keywords:
- cavity optomechanics /
- two-level atoms /
- optomechanical nonlinearity /
- sum sideband effects
-
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014Rev. Mod. Phys. 86 1391
[2] Scully M O, Zubairy M S 1997Quantum Optics (Cambridge: Cambridge University Press) pp1-560
[3] Aspelmeyer M, Meystre P, Schwab K 2012Phys. Today 65 29
[4] Forbes A, Dudley A, McLaren M 2016Adv. Opt. Photonics 8 200
[5] Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020Acta Phys. Sin. 64 164211(陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2020 64 164211)
[6] Xiong H, Wu Y 2018Appl. Phys. Rev. 5 56
[7] Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018Commun. Phys. 1 43
[8] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010Science 330 1520
[9] He Q 2019 Study on Induced Transparency and Related Phenomena in Hybrid Optomechanical Systems: [Ph.D. Dissertation] Huazhong University of Science and Technology (贺庆2019《混合腔光力系统诱导透明及其相关现象的研究》:[博士学位论文] 华中科技大学)
[10] Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014Phys. Rev. A 90 023817
[11] Kong C, Li S, You C, Xiong H, Wu Y 2018Sci. Rep. 8 1060
[12] Shen R C, Li J, Fan Z Y, Wang Y P,You J Q Phys. Rev. Lett. 2022129 123601
[13] Xu Y, Liu J Y, Liu W, Xiao Y F 2021Phys. Rev. A 103 053501
[14] Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 128(刘妮, 马硕, 梁九卿2023 72 128)
[15] Li J, Wang Y P, You J Q, Zhu S Y 2023Natl. Sci. Rev 10 nwac247
[16] Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012Phys. Rev. A 86 013815
[17] Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014Ann. Phys. 349 43
[18] Liu J H, Yu Y F, Zhang Z M 2019Opt. Express 27 15382
[19] Luo J W, Wu W D, Miao Q, Wei T L 2020Acta Phys. Sin. 69 054203(罗均文, 吴德伟, 苗强, 魏天丽2020 69 054203)
[20] Peng J X, Chen Z, Yuan Q Z, Feng X L 2019Phys. Rev. A 99 043817
[21] Han Y, Cheng J, Zhou L 2011J. Phys. B: At. Mol. Opt. Phys. 44 165505
[22] Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019J. Phys. B: At. Mol. Opt. Phys. 52 105502
[23] Han C M, Wang X, Chen H, Li H R 2020Opt. Commun. 456 124605
[24] Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019Acta Phys. Sin. 68 54201(谷开慧, 严冬, 张孟龙, 殷景志, 付长宝2019 68 54201)
[25] Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016Chin. J. Lasers 43 266(廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗2016中国激光43 266)
[26] Asjad M, Saif F 2014Optik 125 5455
[27] Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018Ann. Phys. 530 1800228
[28] Chen S, Jing J 2010Class. Quantum Grav., 27 225006
[29] Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006Phys. Rev. Lett. 97 087203
[30] Michimura Y, Komori K. 2020Eur. Phys. J. D 74 1
[31] Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013Science 342 710
[32] He Y 2016Phys. Rev. A 94 063804
[33] Yasir K A, Liu W M 2016Sci. Rep. 6 22651
[34] Akram M J, Ghafoor F, Khan M M, Saif F 2017Phys. Rev. A 95 023810
[35] Liu L W, Gengzang D J, An X J, Wang P Y 2018Chin. Phys. B 27 034205
[36] Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016Sci. Rep. 6 22920
[37] Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019Phys. Rev. A 100 023820
[38] Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021Phys. Rev. A 104 033708
[39] Nagy D, Szirmai G, Domokos P 2013Eur. Phys. J. D 67 1
[40] Morsch O, Oberthaler M 2006Rev. Mod. Phys. 78 179
[41] Li Ming, Chen Cui-Ling 2014Acta Phys. Sin. 63 043201
[42] Su X, Huang Y M, Xiong H 2019IEEE Access 7 133832
[43] Xiong H, Si L G, Lü X Y, Wu Y 2016Opt. Express 24 5773
[44] Xiong H, Fan Y W, Yang X, Wu Y 2016Appl. Phys. Lett. 109
[45] Liu S, Liu B, Yang W X 2019Opt. Express 27 3909
[46] Wang X Y, Si L G, Lu X H, Wu Y 2019Opt. Express 27 29297
[47] Xiong H, Huang Y M, Wu Y 2021Phys. Rev. A 103 043506
[48] Lu X H, Si L G, Wang X Y, Wu Y 2021Opt. Express 29 4875
[49] Liao Q, Ao J, Song M, Qiu H 2023Opt. Express 31 27508
[50] Wang X, Ren F F, Han S, Han H Y, Yan D 2023Acta Phys. Sin. 72 094203(王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬2023 72 094203)
[51] Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024OPT LASER TECHNOL 168 109934
[52] Singh S K, Peng J X, Asjad M, Mazaheri M 2021J. Phys. B: At. Mol. Opt. Phys. 54 215502
[53] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019Phys. Rev. A 99 063810
[54] Zeng R P, Zhang S, Wu C W, Wu W, Chen P X 2015J. Opt. Soc. Am. B: Opt. Phys. 32 2314
[55] Breyer D, Bienert M 2012Phys. Rev. A 86 053819
Metrics
- Abstract views: 22
- PDF Downloads: 0
- Cited By: 0