Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal

Xing Rong Xie Shuang-Yuan Xu Jing-Ping Yang Ya-Ping

Citation:

Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal

Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spontaneous emission field and spectrum of a two-level atom, located in an isotropic photonic crystal with dynamic band edges, are investigated by means of numeric calculation. The investigation is expected to help comprehend the characteristics of the atomic spontaneous emission in the dynamic photonic crystal, and provide a possible way to control dynamically the spontaneous emission in photonic crystal. The expression of the spontaneous radiation field is obtained without using the far-zone approximation and the Weisskopf-Wigner approximation, and expected to be applicable in other relevant researches. In the investigation, the spontaneous radiation field and spectrum are calculated when the band edge frequency is unmodulated, or modulated by a step function or triangle function. In the unmodulated situation, the radiation field intensity tends to a constant which is equal to the intensity of the localized field component. The radiation field pulse presents a wave packet behavior as propagation distance increases. The components of the radiation field correspond one-to-one to the peaks in the spontaneous radiation spectrum. When the band edge frequency is modulated by step function, the radiation field intensity tends to a steady-state value after the modulation has happened. And the steady-state intensity is affected by the time when the modulation happens. The components of the non-localized field and the frequency of the localized field after modulation depend on the atomic transition frequency and the band edge frequency, and are identical to those in the unmodulated situation with the same parameters. When the band edge frequency is modulated by a triangle function, the field intensity presents a decaying quasi-periodic oscillation after a long enough time. The modulation frequency determines the frequency of the oscillation, and influences the decay rate. The radiation energy becomes sharp peaks around a set of the discrete frequencies which are evenly spaced with the modulation frequency. The central frequency of these frequencies depends on the atomic transition frequency and the value range of the band edge frequency. The modulation initial phase affects the intensity of the radiation field emitted in an initial period of time.
      Corresponding author: Xing Rong, 1110477@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074188, 11274242), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203) and the National Basic Research Program of Special Foundation of China (NKBRSFC) (Grant Nos. 2011CB922203, 2013CB632701).
    [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Tarhan I I, Watson G H 1996 Phys. Rev. Lett. 76 315

    [5]

    John S 1984 Phys. Rev. Lett. 53 2169

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [8]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [9]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [10]

    Quang T, Woldeyohannes M, John S 1997 Phys. Rev. Lett. 79 5238

    [11]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [12]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [13]

    Wang X H, Gu B Y 2005 Physics 34 18 (in Chinese) [王雪华, 顾本源2005物理34 18]

    [14]

    Figotin A, Godin Y A, Vitebsky I 1998 Phys. Rev. B 57 2841

    [15]

    Su J, Chen H M 2010 Acta Opt. Sin. 30 2710 (in Chinese) [苏坚, 陈鹤鸣2010光学学报30 2710]

    [16]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [17]

    Han M G, Shin C G, Jeon S J, Shim H, Heo C J, Jin H, Kim J W, Lee S 2012 Adv. Mater. 24 6438

    [18]

    Oh J M, Hoshina T, Takeda H, Tsurumi T 2013 Appl. Phys. Express 6 062001

    [19]

    Ge J P, He L, Goebl J, Yin Y D 2009 J. Am. Chem. Soc. 131 3484

    [20]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君, 卜胜利, 王响, 纪红柱2012 61 194703]

    [21]

    Sugiyama H, Sawada T, Yano H, Kanai T 2013 J. Mater. Chem. C 1 6103

    [22]

    Liu Z D, Gao J J, Li B, Zhou J 2013 Opt. Mater. 35 1134

    [23]

    Law C K, Zhu S Y, Zubariry M S 1995 Phys. Rev. A 52 4095

    [24]

    Priyesh K V, Thayyullathil R B 2012 Commun. Theor. Phys. 57 468

    [25]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [26]

    Wang L, Xu J P, Gao Y F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095102

    [27]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻2010 59 5508]

    [28]

    Jia F, Xie S Y, Yang Y P 2009 Chin. Phys. B 18 3193

    [29]

    Kofman A G, Kurizki G 2000 Phys. Rev. Lett. 87 270405

    [30]

    Linington I E, Garraway B M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3383

    [31]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [32]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平2014 63 094205]

    [33]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations (Philadelphia: Society for Industrial and Applied Mathematics) Chapter 7

    [34]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chapter 6

    [35]

    Yang Y P, Huang X S 2007 J. Mod. Opt. 54 1407

    [36]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [37]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

  • [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Tarhan I I, Watson G H 1996 Phys. Rev. Lett. 76 315

    [5]

    John S 1984 Phys. Rev. Lett. 53 2169

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [8]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [9]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [10]

    Quang T, Woldeyohannes M, John S 1997 Phys. Rev. Lett. 79 5238

    [11]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [12]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [13]

    Wang X H, Gu B Y 2005 Physics 34 18 (in Chinese) [王雪华, 顾本源2005物理34 18]

    [14]

    Figotin A, Godin Y A, Vitebsky I 1998 Phys. Rev. B 57 2841

    [15]

    Su J, Chen H M 2010 Acta Opt. Sin. 30 2710 (in Chinese) [苏坚, 陈鹤鸣2010光学学报30 2710]

    [16]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [17]

    Han M G, Shin C G, Jeon S J, Shim H, Heo C J, Jin H, Kim J W, Lee S 2012 Adv. Mater. 24 6438

    [18]

    Oh J M, Hoshina T, Takeda H, Tsurumi T 2013 Appl. Phys. Express 6 062001

    [19]

    Ge J P, He L, Goebl J, Yin Y D 2009 J. Am. Chem. Soc. 131 3484

    [20]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君, 卜胜利, 王响, 纪红柱2012 61 194703]

    [21]

    Sugiyama H, Sawada T, Yano H, Kanai T 2013 J. Mater. Chem. C 1 6103

    [22]

    Liu Z D, Gao J J, Li B, Zhou J 2013 Opt. Mater. 35 1134

    [23]

    Law C K, Zhu S Y, Zubariry M S 1995 Phys. Rev. A 52 4095

    [24]

    Priyesh K V, Thayyullathil R B 2012 Commun. Theor. Phys. 57 468

    [25]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [26]

    Wang L, Xu J P, Gao Y F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095102

    [27]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻2010 59 5508]

    [28]

    Jia F, Xie S Y, Yang Y P 2009 Chin. Phys. B 18 3193

    [29]

    Kofman A G, Kurizki G 2000 Phys. Rev. Lett. 87 270405

    [30]

    Linington I E, Garraway B M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3383

    [31]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [32]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平2014 63 094205]

    [33]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations (Philadelphia: Society for Industrial and Applied Mathematics) Chapter 7

    [34]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chapter 6

    [35]

    Yang Y P, Huang X S 2007 J. Mod. Opt. 54 1407

    [36]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [37]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

  • [1] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [2] Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Spontaneous emission from a V-type three-level atom in a dynamic photonic crystal. Acta Physica Sinica, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [3] Li Ming, Chen Cui-Ling. Squeezing properties of atom laser from two-level atomic Bose-Einstein condensate interacting with two-mode light field. Acta Physica Sinica, 2014, 63(4): 043201. doi: 10.7498/aps.63.043201
    [4] Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Spontaneous emission from a two-level atom in a dynamic photonic crystal with an isotropic disoersion relation. Acta Physica Sinica, 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [5] Wang Yi-Fan, Yu Ao-Lie, Wang Hui-Qin, Fang Li-Guang. The dependence of radiation characteristics of random laser on the size and arrangement of crystal grains in PCs. Acta Physica Sinica, 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [6] Yan Yan, Wei Qiao, Li Gao-Xiang. Nonclassical properties of atomic radiation field in a nonlinear photonic crystal. Acta Physica Sinica, 2010, 59(4): 2505-2511. doi: 10.7498/aps.59.2505
    [7] Xie Shuang-Yuan, Hu Xiang. Entanglement between a two-level atom and spontaneous emission field in anisotropic photonic crystal. Acta Physica Sinica, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [8] Sun Yu-Hang, Xi Xiao-Qiang. Photon emission of a two-level atom passing through double single-mode cavity fields. Acta Physica Sinica, 2008, 57(9): 5584-5588. doi: 10.7498/aps.57.5584
    [9] Wang Ju-Xia, Yang Zhi-Yong, An Yu-Ying. The entanglement states transfer and preservation in the process of two-level atoms interacting with multi-mode light fields. Acta Physica Sinica, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [10] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Zhang Jin-Long, Liu Xu. Self-collimation and subwavelength lensing in wavy two-dimensional photonic crystals. Acta Physica Sinica, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [11] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. Spontaneous emission from a Λ-type atom in anisotropic photonic crystal. Acta Physica Sinica, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [12] Tan Rong, Li Gao-Xiang. Spontaneous emission properties of a two-level atom with an intense low-frequency field in a three-dimensional photonic crystal. Acta Physica Sinica, 2005, 54(5): 2059-2065. doi: 10.7498/aps.54.2059
    [13] Liu Xiao-Dong, Wang Yi-Quan, Xu Xing-Sheng, Cheng Bing-Ying, Zhang Dao-Zhong. Enhancement and suppression of the spontaneous emission of a two-level atom in a photonic crystal with a state-conservative photonic pseudogap. Acta Physica Sinica, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [14] Wang Li-Jun, Yu Hui-Ying. The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [15] Chen Ai-Xi, Wu Shu-Dong, Jin Li-Xia, Zhan Zhi-Ming. Interaction of a moving two-level atom with a two-mode quantized cavity field. Acta Physica Sinica, 2003, 52(10): 2466-2470. doi: 10.7498/aps.52.2466
    [16] Chen San, Xie Shang-Yuan, Yang Ya-Ping, Chen Hong. Spontaneous emission from a two-level atom embedded in two-band three-dimensional photonic crystals. Acta Physica Sinica, 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
    [17] Zhang Deng-Yu. . Acta Physica Sinica, 2002, 51(3): 532-535. doi: 10.7498/aps.51.532
    [18] Zhao Lu-Ming, Wang Li-Jun. . Acta Physica Sinica, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [19] HUANG CHUN-JIA, LI JIANG-FAN, ZHOU MING, FANG JIA-YUAN. INFLUENCE OF A VIRTUAL PHOTON FIELD ON THE STATISTIC PROPERTIES OF PHOTONS IN A SYSTEM OF TWO-MODE SQUEEZED VACCUM FIELD INTERACTING WITH ATOMS. Acta Physica Sinica, 2001, 50(10): 1920-1924. doi: 10.7498/aps.50.1920
    [20] XING AI-TANG, HUANG XIANG-YOU, DONG TAI-QIAN. AC-STARK SHIFT OF LEVEL IN TWO-LEVEL ATOM UNDER THE INTERACTION OF MONO-MODE QUANTIZED FIELD. Acta Physica Sinica, 2000, 49(11): 2146-2150. doi: 10.7498/aps.49.2146
Metrics
  • Abstract views:  5996
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2016
  • Accepted Date:  07 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map