-
提出了一种多模光力系统, 该系统由一个光学腔与两个机械振子相互作用, 研究了在不同失谐条件下探测透射谱的行为. 在蓝失谐条件下, 探测光谱经历了光力诱导吸收到参量放大的过程, 并且得到过程中的临界泵浦功率. 在红失谐条件下, 研究系统中的光力诱导透明和法诺共振以及相位色散的变化, 比较不同的光机械耦合强度关系、频率关系和失谐的结果. 数值结果表明, 通过控制两个振动镜的频率关系, 探测光的透射强度曲线经历了从法诺共振到光力诱导透明的一系列变化. 由于探测光的透射窗口伴随着快速的相位色散变化, 会导致群延迟, 进一步讨论由光力诱导透明引起的慢光效应, 提出了可以通过改变腔与泵浦失谐来控制快、慢光的传播; 该系统中的光学延迟可以达到毫秒级. 基于阵列结构的多模光力系统将在减缓和存储光脉冲中有潜在的应用前景.Owing to the radiation pressure, the cavity optomechanical system can couple the optical field with the mechanical resonator, so the state of the mechanical resonator can be regulated through the optical field. Conversely, the optical field in the optomechanical system can also be regulated by modulating the mechanical element. Therefore, many interesting optical phenomena, such as Fano resonance, optomechanically induced absorption and amplification, and optomechanically induced transparency, can be generated in a cavity optomechanical system. Especially in transparent windows, both absorption and dispersion properties change strongly, which results in extensive applications such as slow light and optical storage. Because of its ultra-high quality factor, small size, mass production on chip and convenient all-optical control, it provides an ideal platform for realizing slow light engineering. In this work, by solving the Heisenberg equation of motion of a multimode optomechanical system composed of an optical cavity and two mechanical oscillators, and then by using the input-output relationship for the cavity, the intensity of probe transmission can be obtained. Taking the experimental date as realistic parameters, the behaviors of probe transmission in different detuning conditions are presented. By controlling the pump power under blue detuning, the probe transmission undergoes a process of optomechanically induced absorption to parametric amplification, and the critical pump power is obtained. In the case of red detuning, optomechanically induced transparency, Fano resonance and phase dispersion of the system are studied, and the results of different mechanical coupling strengths, frequency relations and detuning are compared. The numerical results show that as the mechanical coupling strength between two mechanical oscillators increases, the splitting distance becomes larger, and a larger coupling strength ratio will result in a larger splitting peak width. By controlling the frequency relationship between the two resonators, the probe transmission spectra undergo a series of transitions from Fano resonance to optomechanically induced transparency. Because the transmission window of the probe light is accompanied by rapid phase dispersion change, it will lead to group delay. The slow light effect caused by optomechanically induced transparency is further discussed, and the propagation of fast and slow light can be controlled by pump-cavity detuning. The optical delay in this system can be in the order of milliseconds. The multimode optomechanical system based on array structure has a potential application prospect in slowing and storing light pulses.
-
Keywords:
- cavity optomechanics /
- optomechanically induced transparency /
- Fano resonance /
- slow light effect
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
Google Scholar
[2] Metcalfe M 2014 Appl. Phys. Rev. 1 031105
Google Scholar
[3] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89
Google Scholar
[4] Lai D G, Zou F, Hou B P, Xiao Y F, Liao J Q 2018 Phys. Rev. A 98 023860
Google Scholar
[5] Alegre T P, Perahia R, Painter O 2010 Opt. Express 18 7872
Google Scholar
[6] Bagheri M, Poot M, Li M, Pernice W P H, Tang H X 2011 Nat. Nanotechnol. 6 726
Google Scholar
[7] Cole G D, Aspelmeyer M 2011 Nat. Nanotechnol. 6 690
Google Scholar
[8] Caulfield H J, Dolev S 2010 Nat. Photonics 4 261
Google Scholar
[9] Chen H J 2021 Appl. Phys. Express 14 082005
Google Scholar
[10] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799
Google Scholar
[11] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905
Google Scholar
[12] Chen B, Xing H W, Chen J B, Xue H B, Xing L L 2021 Quantum Inf. Process. 20 10
Google Scholar
[13] Chen H J 2021 Phys. Rev. A 104 013708
Google Scholar
[14] Chen H J 2022 Results Phys. 42 105987
Google Scholar
[15] Chen H J 2023 Opt. Laser Technol. 161 109242
Google Scholar
[16] Agarwal G S, Huang S 2012 Phys. Rev. A 85 021801
Google Scholar
[17] Mukherjee K, Jana P C 2019 Eur. Phys. J. D 73 264
Google Scholar
[18] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520
Google Scholar
[19] Xiong H, Wu Y 2018 App. Phys. Rev. 5 031305
Google Scholar
[20] Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367
Google Scholar
[21] 张利巍, 李贤丽, 杨柳 2019 68 170701
Google Scholar
Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701
Google Scholar
[22] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J, Peng Y 2019 Nanoscale Res. Lett. 14 73
Google Scholar
[23] Chen H J, Yang J Y, Zhao D M, Wu H W 2019 Appl. Opt. 58 2463
Google Scholar
[24] Mahajan S, Singh M K, Bhattacherjee A B 2022 Opt. Quantum Electron. 54 835
Google Scholar
[25] Liu L W, Gengzang D J, Shi Y Q, Chen Q, Wang X L, Wang P Y 2019 Acta Phys. Pol. A 136 444
Google Scholar
[26] Xing H W, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Commun. Theor. Phys. 73 055101
Google Scholar
[27] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810
Google Scholar
[28] Wang L D, Yan J K, Zhu X F, Chen B 2017 Physica E 89 134
Google Scholar
[29] Liu Z X, Xiong H, Wu Y 2018 Phys. Rev. A 97 013801
Google Scholar
[30] Fano U 1961 Phys. Rev. 124 1866
Google Scholar
[31] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
Google Scholar
[32] Long X, Zhang M, Xie Z, Tang M, Li L 2020 Opt. Commun. 459 124942
Google Scholar
[33] Zhen B, Chua S L, Lee J, Rodriguez A W, Liang X, Johnson S G, Joannopoulos J D, Soljačić M, Shapira O 2013 Proc. Natl. Acad. Sci. U. S. A. 110 13711
Google Scholar
[34] Chen H J 2021 Results Phys. 31 105002
Google Scholar
[35] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789
Google Scholar
[36] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204
Google Scholar
[37] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2013 Phys. Rev. A 88 013804
Google Scholar
[38] Bhattacharya M, Meystre P 2008 Phys. Rev. A 78 041801
Google Scholar
[39] Jiang C, Cui Y, Bian X, Zuo F, Yu H, Chen G 2016 Phys. Rev. A 94 023837
Google Scholar
[40] Spethmann N, Kohler J, Schreppler S, Buchmann L, Stamper-Kurn D M 2015 Nat. Phys. 12 27
Google Scholar
[41] Ullah K, Jing H, Saif F 2018 Phys. Rev. A 97 033812
Google Scholar
[42] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196
Google Scholar
[43] Liu Y, Davanco M, Aksyuk V, Srinivasan K 2013 Phys. Rev. Lett. 110 223603
Google Scholar
[44] Shkarin A B, Flowers-Jacobs N E, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett 112 013602
Google Scholar
[45] Huang S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055504
Google Scholar
[46] Ma P C, Zhang J Q, Xiao Y, Feng M, Zhang Z M 2014 Phys. Rev. A 90 043825
Google Scholar
[47] Huang J, Lai D G, Liao J Q 2022 Phys. Rev. A 106 063506
Google Scholar
[48] Lai D G, Liao J Q, Miranowicz A, Nori F 2022 Phys. Rev. Lett. 129 063602
Google Scholar
[49] Lai D G, Qin W, Hou B P, Miranowicz A, Nori F 2021 Phys. Rev. A 104 043521
Google Scholar
[50] Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605
Google Scholar
[51] Chen H J, Zhao D M, Wu H W, Xu H F 2019 AIP Adv. 9 075105
Google Scholar
[52] Yang G, Huang Y X, Rao S 2022 Quantum Inf. Process. 22 29
Google Scholar
[53] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, Liao J Q 2020 Phys. Rev. A 102 011502
Google Scholar
[54] Lai D G, Huang J, Hou B P, Nori F, Liao J Q 2021 Phys. Rev. A 103 063509
Google Scholar
[55] Lai D G, Qin W, Miranowicz A, Nori F 2022 Phys. Rev. Res. 4 033102
Google Scholar
[56] Huang J, Lai D G, Liu C, Huang J F, Nori F, Liao J Q 2022 Phys. Rev. A 106 013526
Google Scholar
[57] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A, Sillanpää M A 2019 Phys. Rev. A 99 023826
Google Scholar
[58] 陈华俊 2020 69 134203
Google Scholar
Chen H J 2020 Acta Phys. Sin. 69 134203
Google Scholar
[59] Ghobadi R, Bahrampour A R, Simon C 2011 Phys. Rev. A 84 033846
Google Scholar
[60] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002
Google Scholar
[61] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
Google Scholar
[62] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
Google Scholar
[63] Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photonics 2 741
Google Scholar
[64] Lai D G, Wang X, Qin W, Hou B P, Nori F, Liao J Q 2020 Phys. Rev. A 102 023707
Google Scholar
[65] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R, Schmidt H 2010 Nat. Photonics 4 776
Google Scholar
[66] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601
Google Scholar
[67] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
Google Scholar
[68] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803
Google Scholar
-
图 2 在失谐
$\varDelta=-{\omega _1}$ 时, 对于不同泵浦光${P_{\text{c}}}$ 功率下探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为归一化失谐$(\varOmega + {\omega _1})/{\omega _1}$ 的函数 (a)${P_{\text{c}}} = $ $ 1{\text{ fW}}$ ; (b)${P_{\text{c}}} = 4.5{\text{ fW}}$ ; (c)${P_{\text{c}}} = 5{\text{ fW}}$ . (d) 探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为泵浦功率${P_{\text{c}}}$ 的函数Fig. 2. (a)−(c) Transmission rate
${\left| {t({\omega _{\text{s}}})} \right|^2}$ of the probe field as a function of normalized detuning$(\varOmega + {\omega _1})/{\omega _1}$ for different pump light power at$\varDelta =-{\omega _1}$ : (a)${P_{\text{c}}} = 1{\text{ fW}}$ ; (b)${P_{\text{c}}} = 4.5{\text{ fW}}$ ; (c)${P_{\text{c}}} = 5{\text{ fW}}$ . (d) Transmission rate${\left| {t({\omega _{\text{s}}})} \right|^2}$ of the probe field as a function of pump light power.图 3 (a) 在失谐
$\varDelta ={\omega _1}$ 条件下, 光机械耦合强度不同时探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐$ {\varDelta _{\text{s}}}/{\omega _1} $ 的函数; (b) 图(a)的部分放大图; (c) 在失谐$\varDelta={\omega _1}$ 条件下, 振子频率不同时探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (d) 腔-泵浦失谐不同时, 探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数Fig. 3. (a) Probe transmission
${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different optomechanical coupling strengths on the condition of$\varDelta={\omega _1}$ ; (b) the amplification of panel (a); (c) the probe transmission${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different frequencies of resonators in the condition of$\varDelta={\omega _1}$ ; (d) the probe transmission${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different cavity-pump detuning.图 4 (a) 在不同光机械耦合强度下, 相位
${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (b) 图(a)的部分放大图; (c) 在不同振子频率下, 相位${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (d) 在不同腔-泵浦失谐下, 相位${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数Fig. 4. (a) Phase
${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different optomechanical coupling strengths; (b) the amplification of panel (a); (c) the phase${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different frequencies of resonators; (d) the phase${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different cavity-pump detuning.图 5 (a) 不同频率下, 群延迟
${\tau _{\text{g}}}$ 作为泵浦功率${P_{\text{c}}}$ 的函数; (b) 不同腔-泵失谐下, 群延迟${\tau _{\text{g}}}$ 作为泵浦功率${P_{\text{c}}}$ 的函数Fig. 5. (a) Group delay
${\tau _{\text{g}}}$ as a function of${P_{\text{c}}}$ for different frequencies of resonators; (b) the group delay${\tau _{\text{g}}}$ as a function of${P_{\text{c}}}$ for different cavity-pump detuning. -
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
Google Scholar
[2] Metcalfe M 2014 Appl. Phys. Rev. 1 031105
Google Scholar
[3] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89
Google Scholar
[4] Lai D G, Zou F, Hou B P, Xiao Y F, Liao J Q 2018 Phys. Rev. A 98 023860
Google Scholar
[5] Alegre T P, Perahia R, Painter O 2010 Opt. Express 18 7872
Google Scholar
[6] Bagheri M, Poot M, Li M, Pernice W P H, Tang H X 2011 Nat. Nanotechnol. 6 726
Google Scholar
[7] Cole G D, Aspelmeyer M 2011 Nat. Nanotechnol. 6 690
Google Scholar
[8] Caulfield H J, Dolev S 2010 Nat. Photonics 4 261
Google Scholar
[9] Chen H J 2021 Appl. Phys. Express 14 082005
Google Scholar
[10] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799
Google Scholar
[11] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905
Google Scholar
[12] Chen B, Xing H W, Chen J B, Xue H B, Xing L L 2021 Quantum Inf. Process. 20 10
Google Scholar
[13] Chen H J 2021 Phys. Rev. A 104 013708
Google Scholar
[14] Chen H J 2022 Results Phys. 42 105987
Google Scholar
[15] Chen H J 2023 Opt. Laser Technol. 161 109242
Google Scholar
[16] Agarwal G S, Huang S 2012 Phys. Rev. A 85 021801
Google Scholar
[17] Mukherjee K, Jana P C 2019 Eur. Phys. J. D 73 264
Google Scholar
[18] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520
Google Scholar
[19] Xiong H, Wu Y 2018 App. Phys. Rev. 5 031305
Google Scholar
[20] Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367
Google Scholar
[21] 张利巍, 李贤丽, 杨柳 2019 68 170701
Google Scholar
Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701
Google Scholar
[22] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J, Peng Y 2019 Nanoscale Res. Lett. 14 73
Google Scholar
[23] Chen H J, Yang J Y, Zhao D M, Wu H W 2019 Appl. Opt. 58 2463
Google Scholar
[24] Mahajan S, Singh M K, Bhattacherjee A B 2022 Opt. Quantum Electron. 54 835
Google Scholar
[25] Liu L W, Gengzang D J, Shi Y Q, Chen Q, Wang X L, Wang P Y 2019 Acta Phys. Pol. A 136 444
Google Scholar
[26] Xing H W, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Commun. Theor. Phys. 73 055101
Google Scholar
[27] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810
Google Scholar
[28] Wang L D, Yan J K, Zhu X F, Chen B 2017 Physica E 89 134
Google Scholar
[29] Liu Z X, Xiong H, Wu Y 2018 Phys. Rev. A 97 013801
Google Scholar
[30] Fano U 1961 Phys. Rev. 124 1866
Google Scholar
[31] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
Google Scholar
[32] Long X, Zhang M, Xie Z, Tang M, Li L 2020 Opt. Commun. 459 124942
Google Scholar
[33] Zhen B, Chua S L, Lee J, Rodriguez A W, Liang X, Johnson S G, Joannopoulos J D, Soljačić M, Shapira O 2013 Proc. Natl. Acad. Sci. U. S. A. 110 13711
Google Scholar
[34] Chen H J 2021 Results Phys. 31 105002
Google Scholar
[35] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789
Google Scholar
[36] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204
Google Scholar
[37] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2013 Phys. Rev. A 88 013804
Google Scholar
[38] Bhattacharya M, Meystre P 2008 Phys. Rev. A 78 041801
Google Scholar
[39] Jiang C, Cui Y, Bian X, Zuo F, Yu H, Chen G 2016 Phys. Rev. A 94 023837
Google Scholar
[40] Spethmann N, Kohler J, Schreppler S, Buchmann L, Stamper-Kurn D M 2015 Nat. Phys. 12 27
Google Scholar
[41] Ullah K, Jing H, Saif F 2018 Phys. Rev. A 97 033812
Google Scholar
[42] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196
Google Scholar
[43] Liu Y, Davanco M, Aksyuk V, Srinivasan K 2013 Phys. Rev. Lett. 110 223603
Google Scholar
[44] Shkarin A B, Flowers-Jacobs N E, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett 112 013602
Google Scholar
[45] Huang S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055504
Google Scholar
[46] Ma P C, Zhang J Q, Xiao Y, Feng M, Zhang Z M 2014 Phys. Rev. A 90 043825
Google Scholar
[47] Huang J, Lai D G, Liao J Q 2022 Phys. Rev. A 106 063506
Google Scholar
[48] Lai D G, Liao J Q, Miranowicz A, Nori F 2022 Phys. Rev. Lett. 129 063602
Google Scholar
[49] Lai D G, Qin W, Hou B P, Miranowicz A, Nori F 2021 Phys. Rev. A 104 043521
Google Scholar
[50] Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605
Google Scholar
[51] Chen H J, Zhao D M, Wu H W, Xu H F 2019 AIP Adv. 9 075105
Google Scholar
[52] Yang G, Huang Y X, Rao S 2022 Quantum Inf. Process. 22 29
Google Scholar
[53] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, Liao J Q 2020 Phys. Rev. A 102 011502
Google Scholar
[54] Lai D G, Huang J, Hou B P, Nori F, Liao J Q 2021 Phys. Rev. A 103 063509
Google Scholar
[55] Lai D G, Qin W, Miranowicz A, Nori F 2022 Phys. Rev. Res. 4 033102
Google Scholar
[56] Huang J, Lai D G, Liu C, Huang J F, Nori F, Liao J Q 2022 Phys. Rev. A 106 013526
Google Scholar
[57] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A, Sillanpää M A 2019 Phys. Rev. A 99 023826
Google Scholar
[58] 陈华俊 2020 69 134203
Google Scholar
Chen H J 2020 Acta Phys. Sin. 69 134203
Google Scholar
[59] Ghobadi R, Bahrampour A R, Simon C 2011 Phys. Rev. A 84 033846
Google Scholar
[60] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002
Google Scholar
[61] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
Google Scholar
[62] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
Google Scholar
[63] Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photonics 2 741
Google Scholar
[64] Lai D G, Wang X, Qin W, Hou B P, Nori F, Liao J Q 2020 Phys. Rev. A 102 023707
Google Scholar
[65] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R, Schmidt H 2010 Nat. Photonics 4 776
Google Scholar
[66] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601
Google Scholar
[67] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
Google Scholar
[68] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803
Google Scholar
计量
- 文章访问数: 3824
- PDF下载量: 92
- 被引次数: 0