-
提出了一种多模光力系统, 该系统由一个光学腔与两个机械振子相互作用, 研究了在不同失谐条件下探测透射谱的行为. 在蓝失谐条件下, 探测光谱经历了光力诱导吸收到参量放大的过程, 并且得到过程中的临界泵浦功率. 在红失谐条件下, 研究系统中的光力诱导透明和法诺共振以及相位色散的变化, 比较不同的光机械耦合强度关系、频率关系和失谐的结果. 数值结果表明, 通过控制两个振动镜的频率关系, 探测光的透射强度曲线经历了从法诺共振到光力诱导透明的一系列变化. 由于探测光的透射窗口伴随着快速的相位色散变化, 会导致群延迟, 进一步讨论由光力诱导透明引起的慢光效应, 提出了可以通过改变腔与泵浦失谐来控制快、慢光的传播; 该系统中的光学延迟可以达到毫秒级. 基于阵列结构的多模光力系统将在减缓和存储光脉冲中有潜在的应用前景.Owing to the radiation pressure, the cavity optomechanical system can couple the optical field with the mechanical resonator, so the state of the mechanical resonator can be regulated through the optical field. Conversely, the optical field in the optomechanical system can also be regulated by modulating the mechanical element. Therefore, many interesting optical phenomena, such as Fano resonance, optomechanically induced absorption and amplification, and optomechanically induced transparency, can be generated in a cavity optomechanical system. Especially in transparent windows, both absorption and dispersion properties change strongly, which results in extensive applications such as slow light and optical storage. Because of its ultra-high quality factor, small size, mass production on chip and convenient all-optical control, it provides an ideal platform for realizing slow light engineering. In this work, by solving the Heisenberg equation of motion of a multimode optomechanical system composed of an optical cavity and two mechanical oscillators, and then by using the input-output relationship for the cavity, the intensity of probe transmission can be obtained. Taking the experimental date as realistic parameters, the behaviors of probe transmission in different detuning conditions are presented. By controlling the pump power under blue detuning, the probe transmission undergoes a process of optomechanically induced absorption to parametric amplification, and the critical pump power is obtained. In the case of red detuning, optomechanically induced transparency, Fano resonance and phase dispersion of the system are studied, and the results of different mechanical coupling strengths, frequency relations and detuning are compared. The numerical results show that as the mechanical coupling strength between two mechanical oscillators increases, the splitting distance becomes larger, and a larger coupling strength ratio will result in a larger splitting peak width. By controlling the frequency relationship between the two resonators, the probe transmission spectra undergo a series of transitions from Fano resonance to optomechanically induced transparency. Because the transmission window of the probe light is accompanied by rapid phase dispersion change, it will lead to group delay. The slow light effect caused by optomechanically induced transparency is further discussed, and the propagation of fast and slow light can be controlled by pump-cavity detuning. The optical delay in this system can be in the order of milliseconds. The multimode optomechanical system based on array structure has a potential application prospect in slowing and storing light pulses.
-
Keywords:
- cavity optomechanics /
- optomechanically induced transparency /
- Fano resonance /
- slow light effect
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar
[2] Metcalfe M 2014 Appl. Phys. Rev. 1 031105Google Scholar
[3] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar
[4] Lai D G, Zou F, Hou B P, Xiao Y F, Liao J Q 2018 Phys. Rev. A 98 023860Google Scholar
[5] Alegre T P, Perahia R, Painter O 2010 Opt. Express 18 7872Google Scholar
[6] Bagheri M, Poot M, Li M, Pernice W P H, Tang H X 2011 Nat. Nanotechnol. 6 726Google Scholar
[7] Cole G D, Aspelmeyer M 2011 Nat. Nanotechnol. 6 690Google Scholar
[8] Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar
[9] Chen H J 2021 Appl. Phys. Express 14 082005Google Scholar
[10] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799Google Scholar
[11] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905Google Scholar
[12] Chen B, Xing H W, Chen J B, Xue H B, Xing L L 2021 Quantum Inf. Process. 20 10Google Scholar
[13] Chen H J 2021 Phys. Rev. A 104 013708Google Scholar
[14] Chen H J 2022 Results Phys. 42 105987Google Scholar
[15] Chen H J 2023 Opt. Laser Technol. 161 109242Google Scholar
[16] Agarwal G S, Huang S 2012 Phys. Rev. A 85 021801Google Scholar
[17] Mukherjee K, Jana P C 2019 Eur. Phys. J. D 73 264Google Scholar
[18] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar
[19] Xiong H, Wu Y 2018 App. Phys. Rev. 5 031305Google Scholar
[20] Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367Google Scholar
[21] 张利巍, 李贤丽, 杨柳 2019 68 170701Google Scholar
Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar
[22] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J, Peng Y 2019 Nanoscale Res. Lett. 14 73Google Scholar
[23] Chen H J, Yang J Y, Zhao D M, Wu H W 2019 Appl. Opt. 58 2463Google Scholar
[24] Mahajan S, Singh M K, Bhattacherjee A B 2022 Opt. Quantum Electron. 54 835Google Scholar
[25] Liu L W, Gengzang D J, Shi Y Q, Chen Q, Wang X L, Wang P Y 2019 Acta Phys. Pol. A 136 444Google Scholar
[26] Xing H W, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Commun. Theor. Phys. 73 055101Google Scholar
[27] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar
[28] Wang L D, Yan J K, Zhu X F, Chen B 2017 Physica E 89 134Google Scholar
[29] Liu Z X, Xiong H, Wu Y 2018 Phys. Rev. A 97 013801Google Scholar
[30] Fano U 1961 Phys. Rev. 124 1866Google Scholar
[31] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar
[32] Long X, Zhang M, Xie Z, Tang M, Li L 2020 Opt. Commun. 459 124942Google Scholar
[33] Zhen B, Chua S L, Lee J, Rodriguez A W, Liang X, Johnson S G, Joannopoulos J D, Soljačić M, Shapira O 2013 Proc. Natl. Acad. Sci. U. S. A. 110 13711Google Scholar
[34] Chen H J 2021 Results Phys. 31 105002Google Scholar
[35] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar
[36] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar
[37] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2013 Phys. Rev. A 88 013804Google Scholar
[38] Bhattacharya M, Meystre P 2008 Phys. Rev. A 78 041801Google Scholar
[39] Jiang C, Cui Y, Bian X, Zuo F, Yu H, Chen G 2016 Phys. Rev. A 94 023837Google Scholar
[40] Spethmann N, Kohler J, Schreppler S, Buchmann L, Stamper-Kurn D M 2015 Nat. Phys. 12 27Google Scholar
[41] Ullah K, Jing H, Saif F 2018 Phys. Rev. A 97 033812Google Scholar
[42] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196Google Scholar
[43] Liu Y, Davanco M, Aksyuk V, Srinivasan K 2013 Phys. Rev. Lett. 110 223603Google Scholar
[44] Shkarin A B, Flowers-Jacobs N E, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett 112 013602Google Scholar
[45] Huang S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055504Google Scholar
[46] Ma P C, Zhang J Q, Xiao Y, Feng M, Zhang Z M 2014 Phys. Rev. A 90 043825Google Scholar
[47] Huang J, Lai D G, Liao J Q 2022 Phys. Rev. A 106 063506Google Scholar
[48] Lai D G, Liao J Q, Miranowicz A, Nori F 2022 Phys. Rev. Lett. 129 063602Google Scholar
[49] Lai D G, Qin W, Hou B P, Miranowicz A, Nori F 2021 Phys. Rev. A 104 043521Google Scholar
[50] Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605Google Scholar
[51] Chen H J, Zhao D M, Wu H W, Xu H F 2019 AIP Adv. 9 075105Google Scholar
[52] Yang G, Huang Y X, Rao S 2022 Quantum Inf. Process. 22 29Google Scholar
[53] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, Liao J Q 2020 Phys. Rev. A 102 011502Google Scholar
[54] Lai D G, Huang J, Hou B P, Nori F, Liao J Q 2021 Phys. Rev. A 103 063509Google Scholar
[55] Lai D G, Qin W, Miranowicz A, Nori F 2022 Phys. Rev. Res. 4 033102Google Scholar
[56] Huang J, Lai D G, Liu C, Huang J F, Nori F, Liao J Q 2022 Phys. Rev. A 106 013526Google Scholar
[57] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A, Sillanpää M A 2019 Phys. Rev. A 99 023826Google Scholar
[58] 陈华俊 2020 69 134203Google Scholar
Chen H J 2020 Acta Phys. Sin. 69 134203Google Scholar
[59] Ghobadi R, Bahrampour A R, Simon C 2011 Phys. Rev. A 84 033846Google Scholar
[60] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002Google Scholar
[61] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[62] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar
[63] Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photonics 2 741Google Scholar
[64] Lai D G, Wang X, Qin W, Hou B P, Nori F, Liao J Q 2020 Phys. Rev. A 102 023707Google Scholar
[65] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R, Schmidt H 2010 Nat. Photonics 4 776Google Scholar
[66] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar
[67] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar
[68] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803Google Scholar
-
图 2 在失谐
$\varDelta=-{\omega _1}$ 时, 对于不同泵浦光${P_{\text{c}}}$ 功率下探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为归一化失谐$(\varOmega + {\omega _1})/{\omega _1}$ 的函数 (a)${P_{\text{c}}} = $ $ 1{\text{ fW}}$ ; (b)${P_{\text{c}}} = 4.5{\text{ fW}}$ ; (c)${P_{\text{c}}} = 5{\text{ fW}}$ . (d) 探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为泵浦功率${P_{\text{c}}}$ 的函数Fig. 2. (a)−(c) Transmission rate
${\left| {t({\omega _{\text{s}}})} \right|^2}$ of the probe field as a function of normalized detuning$(\varOmega + {\omega _1})/{\omega _1}$ for different pump light power at$\varDelta =-{\omega _1}$ : (a)${P_{\text{c}}} = 1{\text{ fW}}$ ; (b)${P_{\text{c}}} = 4.5{\text{ fW}}$ ; (c)${P_{\text{c}}} = 5{\text{ fW}}$ . (d) Transmission rate${\left| {t({\omega _{\text{s}}})} \right|^2}$ of the probe field as a function of pump light power.图 3 (a) 在失谐
$\varDelta ={\omega _1}$ 条件下, 光机械耦合强度不同时探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐$ {\varDelta _{\text{s}}}/{\omega _1} $ 的函数; (b) 图(a)的部分放大图; (c) 在失谐$\varDelta={\omega _1}$ 条件下, 振子频率不同时探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (d) 腔-泵浦失谐不同时, 探测场的透射强度${\left| {t({\omega _{\text{s}}})} \right|^2}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数Fig. 3. (a) Probe transmission
${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different optomechanical coupling strengths on the condition of$\varDelta={\omega _1}$ ; (b) the amplification of panel (a); (c) the probe transmission${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different frequencies of resonators in the condition of$\varDelta={\omega _1}$ ; (d) the probe transmission${\left| {t({\omega _{\text{s}}})} \right|^2}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different cavity-pump detuning.图 4 (a) 在不同光机械耦合强度下, 相位
${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (b) 图(a)的部分放大图; (c) 在不同振子频率下, 相位${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数; (d) 在不同腔-泵浦失谐下, 相位${\phi _{\text{t}}}$ 作为探测-腔失谐${\varDelta _{\text{s}}}/{\omega _1}$ 的函数Fig. 4. (a) Phase
${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different optomechanical coupling strengths; (b) the amplification of panel (a); (c) the phase${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different frequencies of resonators; (d) the phase${\phi _{\text{t}}}$ as a function of${\varDelta _{\text{s}}}/{\omega _1}$ for different cavity-pump detuning.图 5 (a) 不同频率下, 群延迟
${\tau _{\text{g}}}$ 作为泵浦功率${P_{\text{c}}}$ 的函数; (b) 不同腔-泵失谐下, 群延迟${\tau _{\text{g}}}$ 作为泵浦功率${P_{\text{c}}}$ 的函数Fig. 5. (a) Group delay
${\tau _{\text{g}}}$ as a function of${P_{\text{c}}}$ for different frequencies of resonators; (b) the group delay${\tau _{\text{g}}}$ as a function of${P_{\text{c}}}$ for different cavity-pump detuning. -
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar
[2] Metcalfe M 2014 Appl. Phys. Rev. 1 031105Google Scholar
[3] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar
[4] Lai D G, Zou F, Hou B P, Xiao Y F, Liao J Q 2018 Phys. Rev. A 98 023860Google Scholar
[5] Alegre T P, Perahia R, Painter O 2010 Opt. Express 18 7872Google Scholar
[6] Bagheri M, Poot M, Li M, Pernice W P H, Tang H X 2011 Nat. Nanotechnol. 6 726Google Scholar
[7] Cole G D, Aspelmeyer M 2011 Nat. Nanotechnol. 6 690Google Scholar
[8] Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar
[9] Chen H J 2021 Appl. Phys. Express 14 082005Google Scholar
[10] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799Google Scholar
[11] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905Google Scholar
[12] Chen B, Xing H W, Chen J B, Xue H B, Xing L L 2021 Quantum Inf. Process. 20 10Google Scholar
[13] Chen H J 2021 Phys. Rev. A 104 013708Google Scholar
[14] Chen H J 2022 Results Phys. 42 105987Google Scholar
[15] Chen H J 2023 Opt. Laser Technol. 161 109242Google Scholar
[16] Agarwal G S, Huang S 2012 Phys. Rev. A 85 021801Google Scholar
[17] Mukherjee K, Jana P C 2019 Eur. Phys. J. D 73 264Google Scholar
[18] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar
[19] Xiong H, Wu Y 2018 App. Phys. Rev. 5 031305Google Scholar
[20] Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367Google Scholar
[21] 张利巍, 李贤丽, 杨柳 2019 68 170701Google Scholar
Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar
[22] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J, Peng Y 2019 Nanoscale Res. Lett. 14 73Google Scholar
[23] Chen H J, Yang J Y, Zhao D M, Wu H W 2019 Appl. Opt. 58 2463Google Scholar
[24] Mahajan S, Singh M K, Bhattacherjee A B 2022 Opt. Quantum Electron. 54 835Google Scholar
[25] Liu L W, Gengzang D J, Shi Y Q, Chen Q, Wang X L, Wang P Y 2019 Acta Phys. Pol. A 136 444Google Scholar
[26] Xing H W, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Commun. Theor. Phys. 73 055101Google Scholar
[27] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar
[28] Wang L D, Yan J K, Zhu X F, Chen B 2017 Physica E 89 134Google Scholar
[29] Liu Z X, Xiong H, Wu Y 2018 Phys. Rev. A 97 013801Google Scholar
[30] Fano U 1961 Phys. Rev. 124 1866Google Scholar
[31] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar
[32] Long X, Zhang M, Xie Z, Tang M, Li L 2020 Opt. Commun. 459 124942Google Scholar
[33] Zhen B, Chua S L, Lee J, Rodriguez A W, Liang X, Johnson S G, Joannopoulos J D, Soljačić M, Shapira O 2013 Proc. Natl. Acad. Sci. U. S. A. 110 13711Google Scholar
[34] Chen H J 2021 Results Phys. 31 105002Google Scholar
[35] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar
[36] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar
[37] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2013 Phys. Rev. A 88 013804Google Scholar
[38] Bhattacharya M, Meystre P 2008 Phys. Rev. A 78 041801Google Scholar
[39] Jiang C, Cui Y, Bian X, Zuo F, Yu H, Chen G 2016 Phys. Rev. A 94 023837Google Scholar
[40] Spethmann N, Kohler J, Schreppler S, Buchmann L, Stamper-Kurn D M 2015 Nat. Phys. 12 27Google Scholar
[41] Ullah K, Jing H, Saif F 2018 Phys. Rev. A 97 033812Google Scholar
[42] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196Google Scholar
[43] Liu Y, Davanco M, Aksyuk V, Srinivasan K 2013 Phys. Rev. Lett. 110 223603Google Scholar
[44] Shkarin A B, Flowers-Jacobs N E, Hoch S W, Kashkanova A D, Deutsch C, Reichel J, Harris J G E 2014 Phys. Rev. Lett 112 013602Google Scholar
[45] Huang S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055504Google Scholar
[46] Ma P C, Zhang J Q, Xiao Y, Feng M, Zhang Z M 2014 Phys. Rev. A 90 043825Google Scholar
[47] Huang J, Lai D G, Liao J Q 2022 Phys. Rev. A 106 063506Google Scholar
[48] Lai D G, Liao J Q, Miranowicz A, Nori F 2022 Phys. Rev. Lett. 129 063602Google Scholar
[49] Lai D G, Qin W, Hou B P, Miranowicz A, Nori F 2021 Phys. Rev. A 104 043521Google Scholar
[50] Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605Google Scholar
[51] Chen H J, Zhao D M, Wu H W, Xu H F 2019 AIP Adv. 9 075105Google Scholar
[52] Yang G, Huang Y X, Rao S 2022 Quantum Inf. Process. 22 29Google Scholar
[53] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, Liao J Q 2020 Phys. Rev. A 102 011502Google Scholar
[54] Lai D G, Huang J, Hou B P, Nori F, Liao J Q 2021 Phys. Rev. A 103 063509Google Scholar
[55] Lai D G, Qin W, Miranowicz A, Nori F 2022 Phys. Rev. Res. 4 033102Google Scholar
[56] Huang J, Lai D G, Liu C, Huang J F, Nori F, Liao J Q 2022 Phys. Rev. A 106 013526Google Scholar
[57] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A, Sillanpää M A 2019 Phys. Rev. A 99 023826Google Scholar
[58] 陈华俊 2020 69 134203Google Scholar
Chen H J 2020 Acta Phys. Sin. 69 134203Google Scholar
[59] Ghobadi R, Bahrampour A R, Simon C 2011 Phys. Rev. A 84 033846Google Scholar
[60] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002Google Scholar
[61] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[62] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar
[63] Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photonics 2 741Google Scholar
[64] Lai D G, Wang X, Qin W, Hou B P, Nori F, Liao J Q 2020 Phys. Rev. A 102 023707Google Scholar
[65] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R, Schmidt H 2010 Nat. Photonics 4 776Google Scholar
[66] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar
[67] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar
[68] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803Google Scholar
计量
- 文章访问数: 2996
- PDF下载量: 85
- 被引次数: 0