-
Slow light based on four-wave mixing (FWM) wavelength conversion and dispersion is experimentally studied. The FWM bandwidth of the highly nonlinear fiber is measured to be 40 nm, which is also the slow light tunable bandwidth. A 34 ns delay of 500 MHz sine signal is achieved in standard single mode fiber, and 198 ns delay of short pulses with 100 ps width is achieved in dispersion compensation fiber (DCF). An advancement of 209 ns for the 100 ps short pulses is also achieved in the DCF. The method to increase the slow light delay is discussed, and large delay up to microseconds is expected when wideband FWM wavelength conversion and large dispersion fibers are used. The expected large delay will help us realize high efficiency fiber delay lines and all-fiber buffers.
-
Keywords:
- slow light /
- four-wave mixing /
- dispersion
[1] [1]Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[2] [2]Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903
[3] [3]Bigelow M S, Lepeshkin N N, Boyd R W 2003 Science 301 200
[4] [4]Song K Y, Herraez M G, Thevenaz L 2005 Opt. Express 13 82
[5] [5]Okawachi Y, Bigelow M S, Sharping J E, Zhu Z M, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L 2005 Phys. Rev. Lett. 94 153902
[6] [6]Song K Y, Hotate K 2007 Opt. Lett. 32 217
[7] [7]Sharping J E, Okwwachi Y, Gaeta A L 2005 Opt. Express 13 6092
[8] [8]Dahan D, Eisenstein G 2005 Opt. Express 13 6234
[9] [9]Alic N, Windmiller J R, Coles J D, Radic S 2008 J. Select. Top. Quantum Electron. 14 681
[10] ]Wang Y, Yu C Y, Yan L S, Willner A E, Roussev R, Langrock C, Fejer M M, Sharping J E, Gaeta A L 2007 IEEE Photon. Technol. Lett. 19 861
[11] ]Sharping J E, Okawachi Y, Van H J, Xu C, Wang Y, Willner A E, Gaeta A L 2005 Opt. Express 13 7872
[12] ]Fazal I, Yilmaz O, Nuccio S, Zhang B, Willner A E, Langrock C, Fejer M M 2007 Opt. Express 15 10492
[13] ]Wei D B, Zhou G Y, Zhao X T, Yuan J H, Meng J, Wang H Y, Hou L T 2008 Acta Phys. Sin. 57 3011 (in Chinese) [魏东宾、周桂耀、赵兴涛、苑金辉、孟佳、王海云、侯蓝田 2008 57 3011]
[14] ]Zhang D S, Dong X Y, Zhang W G, Wang Z 2005 Acta Phys. Sin. 54 1235 (in Chinese) [张德生、董孝义、张伟刚、王志 2005 54 1235]
[15] ] Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Chin. Phys. 16 1710
[16] ]Okawachi Y, Foster M A, Chen X P, Turner-Foster A C, Salem R, Lipson M, Xu C, Gaeta A L 2008 Opt. Express 16 10349
-
[1] [1]Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[2] [2]Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903
[3] [3]Bigelow M S, Lepeshkin N N, Boyd R W 2003 Science 301 200
[4] [4]Song K Y, Herraez M G, Thevenaz L 2005 Opt. Express 13 82
[5] [5]Okawachi Y, Bigelow M S, Sharping J E, Zhu Z M, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L 2005 Phys. Rev. Lett. 94 153902
[6] [6]Song K Y, Hotate K 2007 Opt. Lett. 32 217
[7] [7]Sharping J E, Okwwachi Y, Gaeta A L 2005 Opt. Express 13 6092
[8] [8]Dahan D, Eisenstein G 2005 Opt. Express 13 6234
[9] [9]Alic N, Windmiller J R, Coles J D, Radic S 2008 J. Select. Top. Quantum Electron. 14 681
[10] ]Wang Y, Yu C Y, Yan L S, Willner A E, Roussev R, Langrock C, Fejer M M, Sharping J E, Gaeta A L 2007 IEEE Photon. Technol. Lett. 19 861
[11] ]Sharping J E, Okawachi Y, Van H J, Xu C, Wang Y, Willner A E, Gaeta A L 2005 Opt. Express 13 7872
[12] ]Fazal I, Yilmaz O, Nuccio S, Zhang B, Willner A E, Langrock C, Fejer M M 2007 Opt. Express 15 10492
[13] ]Wei D B, Zhou G Y, Zhao X T, Yuan J H, Meng J, Wang H Y, Hou L T 2008 Acta Phys. Sin. 57 3011 (in Chinese) [魏东宾、周桂耀、赵兴涛、苑金辉、孟佳、王海云、侯蓝田 2008 57 3011]
[14] ]Zhang D S, Dong X Y, Zhang W G, Wang Z 2005 Acta Phys. Sin. 54 1235 (in Chinese) [张德生、董孝义、张伟刚、王志 2005 54 1235]
[15] ] Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Chin. Phys. 16 1710
[16] ]Okawachi Y, Foster M A, Chen X P, Turner-Foster A C, Salem R, Lipson M, Xu C, Gaeta A L 2008 Opt. Express 16 10349
Catalog
Metrics
- Abstract views: 9117
- PDF Downloads: 936
- Cited By: 0