Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crises in a non-autonomous fractional-order Duffing system

Liu Xiao-Jun Hong Ling Jiang Jun

Citation:

Crises in a non-autonomous fractional-order Duffing system

Liu Xiao-Jun, Hong Ling, Jiang Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the crises in a non-autonomous fractional-order Duffing system are investigated. Firstly, based on the short memory principle of fractional derivative, a global numerical method called an extended generalized cell mapping (EGCM), which combines the generalized cell mapping with the improved predictor-corrector algorithm, is proposed for fractional-order nonlinear systems. The one-step transition probability matrix of Markov chain of the EGCM is generated by the improved predictor-corrector approach for fractional-order systems. The one-step mapping time of the proposed method is evaluated with the help of the short memory principle for fractional derivative to deal with its non-local property and to properly define a bound of the truncation error by considering the features of cell mapping. On the basis of the characteristics of the cell state space, the bound of the truncation error is defined to ensure that the truncation error is less than half a cell size. For a fractional-order Duffing system, boundary and interior crises with varying the derivative order and the intensity of external excitation are determined by the EGCM method. A boundary crisis results from the collision of a chaotic (or regular) saddle in the fractal (or smooth) basin boundary with a periodic (or chaotic) attractor. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes a chaotic attractor to occur, and simultaneously the previous attractor and the unstable chaotic set are converted into a part of the chaotic attractor. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause the chaotic set to have a sudden discontinuous change. Here the chaotic set involves three different kinds of chaotic basic sets: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. The results further reveal that the EGCM is a powerful tool to determine the global dynamics of fractional-order systems.
      Corresponding author: Liu Xiao-Jun, flybett3952@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11332008).
    [1]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press) pp1-150

    [2]

    Mandelbrot B B 1982 The fractal geometry of nature (San Francisco: W H Freeman) pp1-32

    [3]

    Bagley R L, Torvik P J 1983 J. Rheol. 27 201

    [4]

    Bagley R L, Torvik P J 1983 Aiaa J. 21 741

    [5]

    Bagley R L, Torvik P J 1985 Aiaa J. 23 981

    [6]

    Agrawal O P 2004 Nonlinear Dyn. 38 191

    [7]

    Deng R, Davies P, Bajaj A K 2004 Nonlinear Dyn. 38 247

    [8]

    Depollier C, Fellah Z E, Fellah M 2004 Nonlinear Dyn. 38 181

    [9]

    Chen Y Q, Vinagre B M, Podlubny I 2004 Nonlinear Dyn. 38 355

    [10]

    Zhang Y X, Kong G Q, Yu J N 2008 Acta Phys. Sin. 57 6182 (in Chinese) [张永祥,孔贵琴,俞建宁 2008 57 6182]

    [11]

    Zhang G J, Xu J X 2005 Acta Phys. Sin. 54 557 (in Chinese) [张广军,徐健学 2005 54 557]

    [12]

    Yu J J, Cao H F, Xu H B, Xu Q 2006 Acta Phys. Sin. 55 29 (in Chinese) [于津江,曹鹤飞,徐海波,徐权 2006 55 29]

    [13]

    Li C P, Chen G R 2004 Chaos, Solitons Fractals 22 549

    [14]

    Grebogi C, Ott E, Yorke J A 1983 Physica D 7 181

    [15]

    Hsu C S 1992 Int. J. Bifurcation Chaos 2 727

    [16]

    Xu J X, Guttalu R S, Hsu C S 1985 Int. J. Non-Linear Mech. 20 507

    [17]

    Ushio T, Hsu C S 1986 Int. J. Non-Linear Mech. 21 183

    [18]

    Guzzetta V, Franco B, Trask B J, et al. 1992 Genomics 13 551

    [19]

    Xiong F R, Qin Z C, Xue Y, et al. 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1465

    [20]

    Tongue B H, Gu K 1988 J. Appl. Mech. Trans. ASME 55 461

    [21]

    Zufiria P, Guttalu R 1993 Nonlinear Dyn. 4 207

    [22]

    Levitas J, Weller T, Singer J 1994 J. Sound Vib. 176 641

    [23]

    Hong L, Xu J X 1999 Phys. Lett. A 262 361

    [24]

    Jiang J, Xu J X 1994 Phys. Lett. A 188 137

    [25]

    Guder R, Kreuzer E 1999 Nonlinear Dyn. 20 21

    [26]

    Liu X J, Hong L, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419

    [27]

    Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) pp130-132

    [28]

    Deng W H 2007 J. Comput. Appl. Math. 206 174

    [29]

    Ford N J, Charles Simpson A 2001 Numer. Algorithms. 26 333

    [30]

    Petr I 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing Higher: Education Press) pp238-242

  • [1]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press) pp1-150

    [2]

    Mandelbrot B B 1982 The fractal geometry of nature (San Francisco: W H Freeman) pp1-32

    [3]

    Bagley R L, Torvik P J 1983 J. Rheol. 27 201

    [4]

    Bagley R L, Torvik P J 1983 Aiaa J. 21 741

    [5]

    Bagley R L, Torvik P J 1985 Aiaa J. 23 981

    [6]

    Agrawal O P 2004 Nonlinear Dyn. 38 191

    [7]

    Deng R, Davies P, Bajaj A K 2004 Nonlinear Dyn. 38 247

    [8]

    Depollier C, Fellah Z E, Fellah M 2004 Nonlinear Dyn. 38 181

    [9]

    Chen Y Q, Vinagre B M, Podlubny I 2004 Nonlinear Dyn. 38 355

    [10]

    Zhang Y X, Kong G Q, Yu J N 2008 Acta Phys. Sin. 57 6182 (in Chinese) [张永祥,孔贵琴,俞建宁 2008 57 6182]

    [11]

    Zhang G J, Xu J X 2005 Acta Phys. Sin. 54 557 (in Chinese) [张广军,徐健学 2005 54 557]

    [12]

    Yu J J, Cao H F, Xu H B, Xu Q 2006 Acta Phys. Sin. 55 29 (in Chinese) [于津江,曹鹤飞,徐海波,徐权 2006 55 29]

    [13]

    Li C P, Chen G R 2004 Chaos, Solitons Fractals 22 549

    [14]

    Grebogi C, Ott E, Yorke J A 1983 Physica D 7 181

    [15]

    Hsu C S 1992 Int. J. Bifurcation Chaos 2 727

    [16]

    Xu J X, Guttalu R S, Hsu C S 1985 Int. J. Non-Linear Mech. 20 507

    [17]

    Ushio T, Hsu C S 1986 Int. J. Non-Linear Mech. 21 183

    [18]

    Guzzetta V, Franco B, Trask B J, et al. 1992 Genomics 13 551

    [19]

    Xiong F R, Qin Z C, Xue Y, et al. 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1465

    [20]

    Tongue B H, Gu K 1988 J. Appl. Mech. Trans. ASME 55 461

    [21]

    Zufiria P, Guttalu R 1993 Nonlinear Dyn. 4 207

    [22]

    Levitas J, Weller T, Singer J 1994 J. Sound Vib. 176 641

    [23]

    Hong L, Xu J X 1999 Phys. Lett. A 262 361

    [24]

    Jiang J, Xu J X 1994 Phys. Lett. A 188 137

    [25]

    Guder R, Kreuzer E 1999 Nonlinear Dyn. 20 21

    [26]

    Liu X J, Hong L, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419

    [27]

    Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) pp130-132

    [28]

    Deng W H 2007 J. Comput. Appl. Math. 206 174

    [29]

    Ford N J, Charles Simpson A 2001 Numer. Algorithms. 26 333

    [30]

    Petr I 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing Higher: Education Press) pp238-242

  • [1] Yue Xiao-Le, Xiang Yi-Lin, Zhang Ying. Global analysis of crises in shape memory thin plate system. Acta Physica Sinica, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155
    [2] Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao. Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [3] Liu Li, Xu Wei, Yue Xiao-Le, Han Qun. Global analysis of crises in a Duffing vibro-impact oscillator with non-viscously damping. Acta Physica Sinica, 2013, 62(20): 200501. doi: 10.7498/aps.62.200501
    [4] Xin Bao-Gui, Chen Tong, Liu Yan-Qin. Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Physica Sinica, 2011, 60(4): 048901. doi: 10.7498/aps.60.048901
    [5] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. A stability theorem about fractional systems and synchronizing fractional unified chaotic systems based on the theorem. Acta Physica Sinica, 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [6] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [7] Zou Lu-Juan, Wang Bo, Feng Jiu-Chao. A digital watermarking algorithm based on chaos and fractional Fourier transformation. Acta Physica Sinica, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [8] Zhang Qing, Wang Jie-Zhi, Chen Zeng-Qiang, Yuan Zhu-Zhi. The bifurcation analysis of a conjugate Chen chaotic system and the hyperchaos generation based on the system. Acta Physica Sinica, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [9] Zhang Cheng-Fen, Gao Jin-Feng, Xu Lei. Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them. Acta Physica Sinica, 2007, 56(9): 5124-5130. doi: 10.7498/aps.56.5124
    [10] Yan Sen-Lin, Wang Sheng-Qian. Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater. Acta Physica Sinica, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [11] Chao Xiao-Gang, Dai Jun, Wang Wen-Xiu, He Da-Ren. Characteristic crisis in a system with distinguishable strong and weak dissipation functions. Acta Physica Sinica, 2006, 55(1): 47-53. doi: 10.7498/aps.55.47
    [12] Yu Hong-Jie, Liu Yan-Zhu. Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [13] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [14] He Yue, Jiang Yu-Mei, Shen Ying, He Da-Ren. A fat strange set crisis in a piecewise-continuous system. Acta Physica Sinica, 2005, 54(3): 1071-1080. doi: 10.7498/aps.54.1071
    [15] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [16] Lu Yun-Qing, Wang Wen-Xiu, He Da-Ren. Crisis of transient chaos in an electronic relaxation oscillator. Acta Physica Sinica, 2003, 52(5): 1079-1084. doi: 10.7498/aps.52.1079
    [17] HONG LING, XU JIAN-XUE. A NEW TYPE OF BOUNDARY CRISES: CHAOTIC BOUNDARY CRISES. Acta Physica Sinica, 2001, 50(4): 612-618. doi: 10.7498/aps.50.612
    [18] WU WEI-GEN, GU TIAN-XIANG. NONLINEAR FEEDBACK FOLLOWING CONTROL OF CHAOTIC SYSTEMS. Acta Physica Sinica, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
    [19] MA MING-QUAN, WANG WEN-XIU, HE DA-REN. BOUNDARY CRISIS IN A 2D PIECE-WISE SMOOTH MAP*. Acta Physica Sinica, 2000, 49(9): 1679-1682. doi: 10.7498/aps.49.1679
    [20] HONG LING, XU JIAN-XUE. FURTHER STUDY OF INTERIOR CRISES IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS. Acta Physica Sinica, 2000, 49(7): 1228-1234. doi: 10.7498/aps.49.1228
Metrics
  • Abstract views:  5992
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2016
  • Accepted Date:  01 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map