-
A novel technique to generate precisely size-controlled hollow beams by controlling the diameter of circular slit is proposed. Firstly, a laser beam is transformed into a quasi-monochromatic incoherent annular source by a rotating ground-glass disk and circular slit. Then, after passing through a thin converging lens, a J0-correlated Schell-model beam is synthesized by placing the annular incoherent source in the first focal plane of the thin lens. Finally, a partially coherent hollow beam is generated by focusing the J0-correlated Schell-model beam with an axicon. Based on the diffraction theory and the propagation law of partially coherent beams, the cross-spectral density function is derived to calculate the intensity distribution of the cross section and the radial intensity distribution along the propagation axis behind the axicon. By carrying out the theoretical calculation, the proposed optical system generates a partially hollow beam, and the size of the hollow beam expands continuously as the propagation distance increases. Before further investigating the effect of the diameter of incoherent annular source on the hollow beam behind the axicon, we also calculate the intensity distribution of the cross section and the size of hollow beams along the propagation axis at z=70 mm with the source diameters being 1, 2, 3, 4 and 5 mm, respectively. Results show that the size of the hollow beam also increases with the diameter of incoherent annular source increasing. In this case, the size of the hollow beam can be precisely controlled by tuning the diameter of incoherent annular source through circular slit. We also design and conduct an experimental generation of the hollow beam and investigate the propagation properties. In the experiment, we control the diameter of the annular source by tuning the diameter of the circular slit located before the rotating ground-glass disk. And the diameter of the annular source is equal to that of the circular slits. When the sizes of circular slits are 1, 2, 3, 4 and 5 mm, respectively, the corresponding hollow beams are measured by CCD. Experimental results show that the size of hollow beam can be controlled by the propagation distance and the diameter of the circular slit. The intensity profiles are in good agreement with theoretical predictions. Therefore, the size of hollow beams can be precisely generated and controlled by the proposed system so that the optical system can be flexibly employed in optical trapping and manipulation of particles with different sizes. The results may provide a powerful tool for manipulating the micro- and nano-particles.
-
Keywords:
- hollow beam /
- circular slit /
- J0-correlated Schell-model /
- axicon
[1] Pesce G, Volpe G, Marag O M, Jones P H, Gigan S, Sasso A, Volpe G 2015 J. Opt. Soc. Am. B 32 B84
[2] Redding B, Pan Y L 2015 Opt. Lett. 40 2798
[3] Marag O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
[4] Lee K, Danilina A V, Kinnunen M, Priezzhev A V, Meglinski I 2016 IEEE J. Sel. Top. Quantum Electron. 22 7000106
[5] Liu P, L B 2007 Opt. Commun. 272 1
[6] Xu P, He X, Wang J, Zhan M 2010 Opt. Lett. 35 2164
[7] Eckerskorn N, Li L, Kirian R A, Kpper J, DePonte D P, Krolikowski W, Lee W M, Chapman H N, Rode A V 2013 Opt. Express 21 30492
[8] Porfirev A P, Skidanov R V 2015 Opt. Express 23 8373
[9] Turpin A, Polo J, Loiko Y V, Kber J, Schmaltz F, Kalkandjiev T K, Ahufinger V, Birkl G, Mompart J 2015 Opt. Express 23 1638
[10] Shi J Z, Xu T, Zhou Q Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 234209 (in Chinese) [施建珍, 许田, 周巧巧, 纪宪明, 印建平 2015 64 234209]
[11] Gao W, Hu X, Sun D, Li J 2012 Opt. Express 20 20715
[12] Li P, Zhu Q Z, Wu F T 2015 Acta Opt. Sin. 35 0422004 (in Chinese) [李攀, 朱清智, 吴逢铁 2015 光学学报 35 0422004]
[13] He X, Wu F T, Li P, Chen Z Y 2014 Sci. China: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀,陈姿言2014 中国科学: 物理学力学天文学44 705]
[14] He X, Wu F T, Chen Z, Pu J, Chavez-Cerda S 2016 J. Opt. 18 055605
[15] Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221
[16] Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 62 134103]
[17] Zhu Q Z, Shen D H, Wu F T, He X 2016 Acta Phys. Sin. 65 044103 (in Chinese) [朱清智, 沈栋辉, 吴逢铁, 何西 2016 65 044103]
[18] Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311
[19] Borghi R 1999 IEEE J. Quantum Electron. 35 849
[20] Wang X, Yao M, Qiu Z, Yi X, Liu Z 2015 Opt. Express 23 12508
[21] Avramov-zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016 Opt. Commun. 359 207
[22] Rao L, Zheng X, Wang Z, Yei P 2008 Opt. Commun. 281 1358
[23] Li J, Gao X, Chen Y 2012 Opt. Commun. 285 3403
[24] Turunen J, Vasara A, Friberg A T 1991 J. Opt. Soc. Am. A 8 282
[25] Born M, Wolf E (translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp474-486 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第474-486页]
-
[1] Pesce G, Volpe G, Marag O M, Jones P H, Gigan S, Sasso A, Volpe G 2015 J. Opt. Soc. Am. B 32 B84
[2] Redding B, Pan Y L 2015 Opt. Lett. 40 2798
[3] Marag O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
[4] Lee K, Danilina A V, Kinnunen M, Priezzhev A V, Meglinski I 2016 IEEE J. Sel. Top. Quantum Electron. 22 7000106
[5] Liu P, L B 2007 Opt. Commun. 272 1
[6] Xu P, He X, Wang J, Zhan M 2010 Opt. Lett. 35 2164
[7] Eckerskorn N, Li L, Kirian R A, Kpper J, DePonte D P, Krolikowski W, Lee W M, Chapman H N, Rode A V 2013 Opt. Express 21 30492
[8] Porfirev A P, Skidanov R V 2015 Opt. Express 23 8373
[9] Turpin A, Polo J, Loiko Y V, Kber J, Schmaltz F, Kalkandjiev T K, Ahufinger V, Birkl G, Mompart J 2015 Opt. Express 23 1638
[10] Shi J Z, Xu T, Zhou Q Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 234209 (in Chinese) [施建珍, 许田, 周巧巧, 纪宪明, 印建平 2015 64 234209]
[11] Gao W, Hu X, Sun D, Li J 2012 Opt. Express 20 20715
[12] Li P, Zhu Q Z, Wu F T 2015 Acta Opt. Sin. 35 0422004 (in Chinese) [李攀, 朱清智, 吴逢铁 2015 光学学报 35 0422004]
[13] He X, Wu F T, Li P, Chen Z Y 2014 Sci. China: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀,陈姿言2014 中国科学: 物理学力学天文学44 705]
[14] He X, Wu F T, Chen Z, Pu J, Chavez-Cerda S 2016 J. Opt. 18 055605
[15] Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221
[16] Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 62 134103]
[17] Zhu Q Z, Shen D H, Wu F T, He X 2016 Acta Phys. Sin. 65 044103 (in Chinese) [朱清智, 沈栋辉, 吴逢铁, 何西 2016 65 044103]
[18] Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311
[19] Borghi R 1999 IEEE J. Quantum Electron. 35 849
[20] Wang X, Yao M, Qiu Z, Yi X, Liu Z 2015 Opt. Express 23 12508
[21] Avramov-zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016 Opt. Commun. 359 207
[22] Rao L, Zheng X, Wang Z, Yei P 2008 Opt. Commun. 281 1358
[23] Li J, Gao X, Chen Y 2012 Opt. Commun. 285 3403
[24] Turunen J, Vasara A, Friberg A T 1991 J. Opt. Soc. Am. A 8 282
[25] Born M, Wolf E (translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp474-486 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第474-486页]
Catalog
Metrics
- Abstract views: 5862
- PDF Downloads: 212
- Cited By: 0