Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and optimization analysis of imaging system of polarized skylight pattern of full polarization

Wang Cheng Fan Zhi-Guo Jin Hai-Hong Wang Xian-Qiu Hua Dou

Citation:

Design and optimization analysis of imaging system of polarized skylight pattern of full polarization

Wang Cheng, Fan Zhi-Guo, Jin Hai-Hong, Wang Xian-Qiu, Hua Dou
PDF
HTML
Get Citation
  • Full polarization imaging can obtain more information about target, which has a broad application prospect in the target detection, researches of atmospheric characteristics, and medical diagnosis. This paper develops an imaging system of polarized skylight pattern of full polarization for obtaining the information about full polarization rapidly. Meanwhile, aiming at the problem that the error of the light intensity image obtained by the system due to the different “behavior” of the system transmission matrix is brought into the solution of the target Stokes vector, this paper analyzes the condition number and determinant of the system transmission matrix. Firstly, an objective function is established by combining the three sets of condition numbers and the determinant. Therefore, the problem of solving the optimal transmission matrix is transformed into a multi-condition extremal problem. And then the objective function is minimized to determine the optimal angle of the transmission matrix when the 1 norm condition number, 2 norm condition number and ∞ norm condition number reach the minimum value and the determinant reaches the maximum value. In addition, in order to improve the measurement accuracy, the delay components of quarter wave plate, extinction ratio of polarizer, and the transmission matrix of the system are calibrated. Optimization contrast experiment and outfield experiment are performed. The entropy, mean, and standard deviation are used to quantify the optimized results of the angle of polarization, degree of polarization, and degree of linear polarization. ∆Aop is defined as the difference in absolute value of angle of polarization between the two sides of the symmetry axis to verify the optimization performance of angle of polarization. Experimental results show that the polarization angle error after optimization is reduced by more than 10% compared with that before optimization; the error of the band of maximum polarization and the error of the neutral zone in the degree of polarization and linear polarization also decline to different degrees compared with before optimization. On this basis, an experiment on measuring external field full polarization information is carried out. The results show that the system meets the design requirements and can effectively obtain the sky full polarization information.
      Corresponding author: Jin Hai-Hong, hellen8228@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571177) and the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2018JD12)
    [1]

    高隽, 范之国 2014 仿生偏振光导航方法 (北京: 科学出版社) 第2页

    Gao J, Fan Z G 2014 Bionic polarized light navigation method (Beijing: Science Press) p2 (in Chinese)

    [2]

    Wehner R 2003 J. Comp. Physiol. A 189 579Google Scholar

    [3]

    Kraft P, Evangelista C, Dacke M, Labhart T, Srinivasan M V 2011 Philos. Trans. R. Soc. London, Ser. B 366 703Google Scholar

    [4]

    Reppert S M, Zhu H, White R H 2014 Curr. Biol. 14 155

    [5]

    Homberg U 2015 Front. Behav. Neurosci. 9 346

    [6]

    Liang H J, Bai H Y, Liu N, Sui X B 2020 Math. Probl. Eng. 2020 1

    [7]

    Li J S, Chu J K, Zhang R, Chen J H, Wang Y L 2020 Appl. Opt. 59 2955Google Scholar

    [8]

    Dupeyroux J, Viollet S, Serres J R 2019 J. R. Soc. Interface 16 20180878Google Scholar

    [9]

    胡帅, 高太长, 李浩, 程天际, 刘磊, 黄威, 江诗阳 2016 65 014203Google Scholar

    Hu S, Gao T C, Li H, Cheng T J, Liu L, Huang W, Jiang S Y 2016 Acta Phys. Sin. 65 014203Google Scholar

    [10]

    刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰 2016 65 094201Google Scholar

    Liu J, Jin W Q, Wang X, Lu X T, Wen R J 2016 Acta Phys. Sin. 65 094201Google Scholar

    [11]

    王晨光, 张楠, 李大林, 杨江涛, 王飞, 任建斌, 唐军, 刘俊, 薛晨阳 2015 光电工程 42 60Google Scholar

    Wang C G, Zhang N, Li D L, Yang J T, Wang F, Ren J B, Tang J, Liu J, Xue C Y 2015 Opto-Electron. Eng. 42 60Google Scholar

    [12]

    Horváth G, Barta A, Gál J, Suhai B, Haiman O 2002 Appl. Opt. 41 543Google Scholar

    [13]

    Pust N J, Shaw J A 2006 Appl. Opt. 45 22Google Scholar

    [14]

    孙洁, 高隽, 怀宇, 毕冉, 范之国 2016 光电工程 43 45Google Scholar

    Sun J, Gao J, Huai Y, Fan Z G 2016 Opto-Electron. Eng. 43 45Google Scholar

    [15]

    戴俊, 高隽, 范之国 2017 中国激光 44 184

    Dai J, Gao J Fan Z G 2017 Chin. J. Las. 44 184

    [16]

    Hsu W L, Myhre G, Balakrishnan K, Brock N, Ibn-Elhaj M, Pau S. 2014 Opt. Express 22 3063Google Scholar

    [17]

    张忠顺 2014 硕士学位论文 (合肥: 合肥工业大学)

    Zhang Z S 2014 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [18]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [19]

    Kiyohara J, Ueno S, Kitai R, Kurokawa H, Makita M, Ichimoto K 2004 Ground-based Instrumentation for Astronomy (Glasgow: SPIE) p1778

    [20]

    Anan T, Ichimoto K, Oi A, Kimura G, Nakatani Y, Ueno S 2012 Ground-based Instrumentation for Astronomy IV (Glasgow: SPIE) p84461C

    [21]

    Isaacson E, Keller H B 2012 Analysis of numerical methods (Massachusetts: Courier) pp54−55

    [22]

    Iniesta J C D T, Collados M 2000 Appl. Opt. 39 1637Google Scholar

    [23]

    Worster S, Mouritsen H, Hore P J 2017 J. R. Soc. Interface 14 134

  • 图 1  全偏振测量原理图

    Figure 1.  Principle diagram of full polarization measurement.

    图 2  成像系统光路示意图

    Figure 2.  Schematic diagram of the optical path of the imaging system.

    图 3  ${{{M}}_{{\rm{tran}}}}$$1/{\rm{Cond}}$与Det变化趋势 (a) $1/{\rm{Con}}{{\rm{d}}_1}$变化趋势; (b) $1/{\rm{Con}}{{\rm{d}}_2}$变化趋势; (c) $1/{\rm{Con}}{{\rm{d}}_\infty }$变化趋势; (d) $Det$变化趋势

    Figure 3.  The change trend of $1/{\rm{Cond}}$ and Det of the ${{{M}}_{{\rm{tran}}}}$: (a) Change trend of $1/{\rm{Con}}{{\rm{d}}_1}$; (b) change trend of $1/{\rm{Con}}{{\rm{d}}_2}$; (c) change trend of $1/{\rm{Con}}{{\rm{d}}_\infty }$; (d) change trend of Det.

    图 4  系统标定原理框图

    Figure 4.  Block diagram of system calibration principle.

    图 5  优化前后偏振信息对比 (a)−(d) 优化前Aop, ∆Aop, Dop和Dolp; (e)−(h) 优化后Aop, ∆Aop, Dop和Dolp

    Figure 5.  Comparisons of polarization information before and after optimization: (a)−(c) Aop, ∆Aop, Dop and Dolp before optimization; (d)−(f) Aop, ∆Aop, Dop and Dolp after optimization.

    图 6  优化前后Dop, Dolp的BMP和NZ对比 (a)−(d) 优化前Dop, Dolp的BMP和NZ; (e)−(h) 优化后Dop, Dolp的BMP和NZ

    Figure 6.  Comparisons of BMP and NZ of Dop and Dolp before and after optimization: (a)−(d) BMP and NZ of Dop and Dolp before optimization; (e)−(h) BMP and NZ of Dop and Dolp after optimization.

    图 7  目标天空区域光强图与偏振模式分布结果 (a) 偏振光强图; (b) Aop; (c) Dop; (d) Dolp; (e) Docp; (f) I分量图; (g) Q分量图; (h) U分量图; (i) V分量图

    Figure 7.  The light intensity map and polarization mode distribution results of the target sky area: (a) Polarization intensity diagram; (b) Aop; (c) Dop; (d) Dolp; (e) Docp; (f) I component diagram; (g) Q component diagram; (h) U component diagram; (i) V component diagram.

    表 1  最大Det、最小Cond与β对应表

    Table 1.  Corresponding table of maximum Det, minimum Cond and β.

    条件数(Cond)行列式(Det)角度(β0, β1,
    β2, β3)
    Cond18.60840.0923(最大)Det: (5°, 45°, 120°, 155°)
    Cond23.4864
    Cond7.837
    Cond1(最小)7.94480.0814Cond1: (0°, 30°, 115°, 150°)
    –0.0814Cond1: (25°, 60°, 90°, 120°)
    Cond24.0092
    Cond7.0859
    Cond18.4653
    Cond2(最小)3.3381–0.0919Cond2: (35°, 70°, 100°, 135°)
    Cond7.791
    Cond18.5767
    Cond23.4563
    Cond(最小)6.22750.0911Cond: (0°, 40°, 115°, 150°)
    DownLoad: CSV

    表 2  系统传输矩阵标定结果

    Table 2.  Calibration results of system transmission matrix

    QWP旋转角度m11m12m13m14
    0.500–0.44–0.07750.225
    10°0.500–0.377–0.1370.299
    40°0.5000.01020.05770.497
    45°0.5000.0010.1440.479
    120°0.500–0.0574–0.0994–0.487
    125°0.500–0.00975–0.0268–0.499
    155°0.500–0.2690.32–0.274
    160°0.500–0.3520.295–0.198
    DownLoad: CSV

    表 3  优化前后∆Aop数据离散度对比

    Table 3.  Comparisons of data dispersion of the ∆Aop before and after optimization.

    Index均值标准差
    优化前优化后 优化前优化后 优化前优化后
    ∆Aop1.9961.7956 4.95534.2633 27.703624.709
    DownLoad: CSV

    表 4  优化前后BMP的数据离散度指标对比

    Table 4.  Comparisons of data dispersion index of BMP before and after optimization.

    Index均值标准差
    优化前优化后 优化前优化后 优化前优化后
    $\Delta {\rm{Do}}{{\rm{p}}_{{\rm{BMP}}}}$2.68842.5550 0.74960.7252 0.04760.0359
    $\Delta {\rm{Dol}}{{\rm{p}}_{{\rm{BMP}}}}$2.69332.55640.75080.72560.04810.0361
    DownLoad: CSV

    表 5  优化前后NZ数据离散度指标对比

    Table 5.  Comparisons of data dispersion index of NZ before and after optimization.

    Index均值标准差Poa
    优化前优化后 优化前优化后 优化前优化后 优化前优化后
    $\Delta {\rm{Do}}{{\rm{p}}_{{\rm{NZ}}}}$1.53591.5141 0.04460.0413 0.02460.0222 31.937735.3431
    $\Delta {\rm{Dol}}{{\rm{p}}_{{\rm{NZ}}}}$1.52851.50850.04410.04090.02450.022332.815835.9437
    DownLoad: CSV
    Baidu
  • [1]

    高隽, 范之国 2014 仿生偏振光导航方法 (北京: 科学出版社) 第2页

    Gao J, Fan Z G 2014 Bionic polarized light navigation method (Beijing: Science Press) p2 (in Chinese)

    [2]

    Wehner R 2003 J. Comp. Physiol. A 189 579Google Scholar

    [3]

    Kraft P, Evangelista C, Dacke M, Labhart T, Srinivasan M V 2011 Philos. Trans. R. Soc. London, Ser. B 366 703Google Scholar

    [4]

    Reppert S M, Zhu H, White R H 2014 Curr. Biol. 14 155

    [5]

    Homberg U 2015 Front. Behav. Neurosci. 9 346

    [6]

    Liang H J, Bai H Y, Liu N, Sui X B 2020 Math. Probl. Eng. 2020 1

    [7]

    Li J S, Chu J K, Zhang R, Chen J H, Wang Y L 2020 Appl. Opt. 59 2955Google Scholar

    [8]

    Dupeyroux J, Viollet S, Serres J R 2019 J. R. Soc. Interface 16 20180878Google Scholar

    [9]

    胡帅, 高太长, 李浩, 程天际, 刘磊, 黄威, 江诗阳 2016 65 014203Google Scholar

    Hu S, Gao T C, Li H, Cheng T J, Liu L, Huang W, Jiang S Y 2016 Acta Phys. Sin. 65 014203Google Scholar

    [10]

    刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰 2016 65 094201Google Scholar

    Liu J, Jin W Q, Wang X, Lu X T, Wen R J 2016 Acta Phys. Sin. 65 094201Google Scholar

    [11]

    王晨光, 张楠, 李大林, 杨江涛, 王飞, 任建斌, 唐军, 刘俊, 薛晨阳 2015 光电工程 42 60Google Scholar

    Wang C G, Zhang N, Li D L, Yang J T, Wang F, Ren J B, Tang J, Liu J, Xue C Y 2015 Opto-Electron. Eng. 42 60Google Scholar

    [12]

    Horváth G, Barta A, Gál J, Suhai B, Haiman O 2002 Appl. Opt. 41 543Google Scholar

    [13]

    Pust N J, Shaw J A 2006 Appl. Opt. 45 22Google Scholar

    [14]

    孙洁, 高隽, 怀宇, 毕冉, 范之国 2016 光电工程 43 45Google Scholar

    Sun J, Gao J, Huai Y, Fan Z G 2016 Opto-Electron. Eng. 43 45Google Scholar

    [15]

    戴俊, 高隽, 范之国 2017 中国激光 44 184

    Dai J, Gao J Fan Z G 2017 Chin. J. Las. 44 184

    [16]

    Hsu W L, Myhre G, Balakrishnan K, Brock N, Ibn-Elhaj M, Pau S. 2014 Opt. Express 22 3063Google Scholar

    [17]

    张忠顺 2014 硕士学位论文 (合肥: 合肥工业大学)

    Zhang Z S 2014 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [18]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [19]

    Kiyohara J, Ueno S, Kitai R, Kurokawa H, Makita M, Ichimoto K 2004 Ground-based Instrumentation for Astronomy (Glasgow: SPIE) p1778

    [20]

    Anan T, Ichimoto K, Oi A, Kimura G, Nakatani Y, Ueno S 2012 Ground-based Instrumentation for Astronomy IV (Glasgow: SPIE) p84461C

    [21]

    Isaacson E, Keller H B 2012 Analysis of numerical methods (Massachusetts: Courier) pp54−55

    [22]

    Iniesta J C D T, Collados M 2000 Appl. Opt. 39 1637Google Scholar

    [23]

    Worster S, Mouritsen H, Hore P J 2017 J. R. Soc. Interface 14 134

  • [1] Liao Yong-Quan, Zhang Xiao-Xue, Liu Hui, Zhu Xiang-Yu, Chen Xu-Dong, Lin Zhi-Li. Self-reference interferometric measurement of scattering medium transmission matrix based on digital micromirror device superpixel method. Acta Physica Sinica, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [2] Dai Mei-Qin, Zhang Qing-Yue, Zhao Qiu-Ling, Wang Mao-Rong, Wang Xia. Controllable characteristics of interface states in one-dimensional inverted symmetric photonic structures. Acta Physica Sinica, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [3] Zhang Xi-Cheng, Fang Long-Jie, Pang Lin. Transmission matrix optimization based on singular value decomposition in strong scattering process. Acta Physica Sinica, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [4] Hu Shuai, Gao Tai-Chang, Li Hao, Cheng Tian-Ji, Liu Lei, Huang Wei, Jiang Shi-Yang. Atmospheric polarization pattern simulation for small solar elevation angles and the analysis of atmospheric effect. Acta Physica Sinica, 2016, 65(1): 014203. doi: 10.7498/aps.65.014203
    [5] Li Qian-Li, Wen Ting-Dun, Xu Li-Ping, Wang Zhi-Bin. Effect of uniaxial stress on photon localization of one-dimensional photonic crystal with a mirror symmetry. Acta Physica Sinica, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [6] Han Wen-Peng, Shi Yan-Meng, Li Xiao-Li, Luo Shi-Qiang, Lu Yan, Tan Ping-Heng. The numerical-aperture-dependent optical contrast and thickness determination of ultrathin flakes of two-dimensional atomic crystals: A case of graphene multilayers. Acta Physica Sinica, 2013, 62(11): 110702. doi: 10.7498/aps.62.110702
    [7] Zhu Bao-Hui, Zhang Chun-Min, Jian Xiao-Hua, Zeng Wen-Feng. The reasearch of spatiotemporally mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [8] Wang Guang-Huai, Wang Qing-Cai, Wu Xiang-Yao, Zhang Si-Qi, Wang Jing, Liu Xiao-Jing, Ba Nuo, Gao Hai-Xin, Guo Yi-Qing. Research on one-dimensional function photonic crystals. Acta Physica Sinica, 2012, 61(13): 134208. doi: 10.7498/aps.61.134208
    [9] Wu Feng-Tie, Ma Liang, Zhang Qian-An, Zheng Wei-Tao, Pu Ji-Xiong. Experimental and theoretical study on the reconstruction of focused high order Bessel-Gauss beam. Acta Physica Sinica, 2012, 61(1): 014202. doi: 10.7498/aps.61.014202
    [10] Yang Zhi-Chun, Wu Feng, Guo Fang-Zhong, Zhang Chun-Ping. Symplectic symmetry feature of thermoacoustic network. Acta Physica Sinica, 2011, 60(8): 084303. doi: 10.7498/aps.60.084303
    [11] Huang Jian-Liang, Wei Yang, Ma Wen-Quan, Yang Tao, Chen Liang-Hui. On detection wavelength and electron-hole wave function overlap of type Ⅱ InAs/InxGa1-xSb superlattice infrared photodetector. Acta Physica Sinica, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [12] Xu Hui, Cui Mai-Ling, Ma Song-Shan. Heat conduction in one-dimensional Fibonacci chain with on-site potential. Acta Physica Sinica, 2010, 59(10): 7266-7270. doi: 10.7498/aps.59.7266
    [13] Sun Shi-Yan, Jia Xiang-Fu, Shi Wen-Qiang, Li Xiong-Wei. Fully differential cross sections for 102eV electron-impact ionization of helium in non-coplanar geometry. Acta Physica Sinica, 2008, 57(6): 3458-3463. doi: 10.7498/aps.57.3458
    [14] Frequency response of photonic heterostructures consisting of single-negative materials. Acta Physica Sinica, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
    [15] Tong Yuan-Wei, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. The band structure in microwave frequency for quasi-1-D coaxial photonic crystals. Acta Physica Sinica, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [16] Cao Jue-Neng, Guo Qi. Properties of spatial optical solitons to different degrees of nonlocality. Acta Physica Sinica, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [17] Yuan Xian-Zhang, Lu Wei, Li Ning, Chen Xiao-Shuang, Shen Xue-Chu, Zi Jian. Photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetector. Acta Physica Sinica, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [18] Zhou Peng, You Hai-Yang, Wang Song-You, Li He-Yin, Yang Yue-Mei, Chen Liang-Rao. . Acta Physica Sinica, 2002, 51(10): 2276-2280. doi: 10.7498/aps.51.2276
    [19] DU YOU-WEI, LU HUAI-XIAN, ZHANG YU-CHANG, JIAO HONG-ZHEN, FAN DE-PEI. A STUDY ON GROWTH CONDITION OF FeOOH (Ⅱ). Acta Physica Sinica, 1980, 29(7): 889-896. doi: 10.7498/aps.29.889
    [20] DU YOU-WEI, LI ZHENG-YU, LU HUAI-XIAN, GU BEN-XI, WANG GUI-QIN. A STUDY ON GROWTH CONDITION OF FeOOH (Ⅰ). Acta Physica Sinica, 1979, 28(5): 107-113. doi: 10.7498/aps.28.107
Metrics
  • Abstract views:  5023
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2021
  • Accepted Date:  16 February 2021
  • Available Online:  15 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map