Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hidden attractor and its dynamical characteristic in memristive self-oscillating system

Bao Han Bao Bo-Cheng Lin Yi Wang Jiang Wu Hua-Gan

Citation:

Hidden attractor and its dynamical characteristic in memristive self-oscillating system

Bao Han, Bao Bo-Cheng, Lin Yi, Wang Jiang, Wu Hua-Gan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The classical attractors, defined as self-excited attractors, such as Lorenz attractor, Rssler attractor, Chua's attractor and many other well-known attractors, are all excited from unstable index-2 saddle-foci, namely, an attractor with an attraction basin corresponds to an unstable equilibrium. A new type of attractors, defined as hidden attractors, was first found and reported in 2011, whose attraction basin does not intersect with small neighborhoods of the equilibria of the system. Due to the existences of hidden attractors, some particular dynamical systems associated with line equilibrium, or no equilibrium, or stable equilibrium have attracted much attention recently. Additionally, by introducing memristors into existing oscillating circuits or substituting nonlinear resistors in classical chaotic circuits with memristors, a variety of memristor based chaotic and hyperchaotic circuits are simply established and has been broadly investigated in recent years. Motivated by these two considerations, in this paper, we present a novel memristive system with no equilibrium, from which an interesting and striking phenomenon of coexistence of the behaviors of hidden multiple attractors and the corresponding multistability is perfectly demonstrated by numerical simulations and experimental measurements. According to a newly proposed circuit realization scheme, a new type of four-dimensional memristive self-oscillated system is easily implemented by directly replacing a linear coupling resistor in an existing three-dimensional self-oscillated system circuit with a voltage-controlled memristor. The proposed system has no equilibrium, but can generate various hidden attractors including periodic limit cycle, quasi-periodic limit cycle, chaotic attractor, and coexisting attractors and so on. Based on bifurcation diagram, Lyapunov exponent spectra, and phase portraits, complex hidden dynamics with respect to a system parameter of the memristive self-oscillated system are studied. Specially, when different initial conditions are used, the system displays the coexistence phenomenon of chaotic attractors with different topological structures or quasi-periodic limit cycle and chaotic attractor, as well as the phenomenon of multiple attractors of quasi-periodic limit cycle and chaotic attractors with multiple topological structures. The results imply that some coexisting hidden multiple attractors reflecting the emergences of multistability can be observed in the proposed memristive self-oscillated system, which are well illustrated by several conventional dynamical analysis tools. Based on PSIM circuit simulation model, the memristive self-oscillated system is easily made in at a hardware level on a breadboard and two kinds of dynamical behaviors of coexisting hidden multiple attractors are captured in hardware experiments. Hardware experimental measurements are consistent with numerical simulations, which demonstrates that the proposed memristive self-oscillated system has very abundant and complex hidden dynamical characteristics.
      Corresponding author: Bao Bo-Cheng, mervinbao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277017), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15JKB510001), and the Basic Research Foundation of Changzhou, China (Grant No. CJ20159026).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1] Qin Ming-Hong, Lai Qiang, Wu Yong-Hong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors. Acta Physica Sinica, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [2] Fu Long-Xiang, He Shao-Bo, Wang Hui-Hai, Sun Ke-Hui. Simulink modeling and dynamic characteristics of discrete memristor chaotic system. Acta Physica Sinica, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [3] Liu Chun-Jie, Zhao Xin-Jun, Gao Zhi-Fu, Jiang Zhong-Ying. Modeling study of adsorption/desorption of proteins by polymer mixed brush. Acta Physica Sinica, 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] Li Chun-Xi, Cheng Ran, Ye Xue-Min. Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics. Acta Physica Sinica, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] Xu Ke, Xu Long, Zhou Guang-Ping. Dynamic characteristics of bubbles in spherical bubble group considering evaporation and condensation of water vapor. Acta Physica Sinica, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [6] Simulink Modeling and Dynamics of a Discrete Memristor Chaotic System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211549
    [7] An Xin-Lei, Qiao Shuai, Zhang Li. Dynamic response and control of neuros based on electromagnetic field theory. Acta Physica Sinica, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [8] Ning Li-Zhong, Zhang Ke, Ning Bi-Bo, Liu Shuang, Tian Wei-Li. Convection partition and dynamics in inclined Poiseuille-Rayleigh-Bénard flow. Acta Physica Sinica, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [9] Xiao Li-Quan, Duan Shu-Kai, Wang Li-Dan. Julia fractal based multi-scroll memristive chaotic system. Acta Physica Sinica, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [10] Zheng Guang-Chao, Liu Chong-Xin, Wang Yan. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [11] Wang Xiao-Fa, Li Jun. Dynamic characteristics of 1550 nm vertical-cavity surface-emitting laser subject to polarization-rotated optical feedback:the short cavity regime. Acta Physica Sinica, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [12] Jiang Shu-Qing, Ning Jia-Min, Chen Fa-Xin, Ye Fan, Xue Fei-Biao, Li Lin-Bo, Yang Jian-Lun, Chen Jin-Chuan, Zhou Lin, Qin Yi, Li Zheng-Hong, Xu Rong-Kun, Xu Ze-Ping. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum. Acta Physica Sinica, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [13] Li Hong-Wei, Zhou Yun-Long, Liu Xu, Sun Bin. Stochastic subspsace parameter identification and stability diagram of gas-liquid two-phase flow patterns. Acta Physica Sinica, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [14] Wu Yu, Yang Jing-Jing, Wang Li. Kinetic property analysis of emergent behaviors in Swarm model. Acta Physica Sinica, 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [15] He Xing-Suo, Li Xue-Hua, Deng Feng-Yan. Analysis and imitation of dynamic properties for rigid-flexible coupling systems of a planar flexible beam. Acta Physica Sinica, 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [16] Huang Li-Lian, Xin Fang, Wang Lin-Yu. Circuit implementation and control of a new fractional-order hyperchaotic system. Acta Physica Sinica, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [17] Bao Bo-Cheng, Zhou Guo-Hua, Xu Jian-Ping, Liu Zhong. Dynamical modeling and analysis of current mode controlled switching converter with ramp compensation. Acta Physica Sinica, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [18] Jiang Fei, Liu Zhong, Hu Wen, Bao Bo-Cheng. Dynamical design and analysis of continuous chaos frequency modulation signal. Acta Physica Sinica, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [19] Zheng Gui-Bo, Jin Ning-De. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [20] Cai Guo-Liang, Tan Zhen-Mei, Zhou Wei-Huai, Tu Wen-Tao. Dynamical analysis of a new chaotic system and its chaotic control. Acta Physica Sinica, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
Metrics
  • Abstract views:  8408
  • PDF Downloads:  626
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2016
  • Accepted Date:  06 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map