Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamics of trapped finite unitary Fermi gas

Yuan Du-Qi

Citation:

Thermodynamics of trapped finite unitary Fermi gas

Yuan Du-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • At zero-temperature and finite-temperature, the thermodynamic properties of finite unitary Fermi gas in a three-dimensional harmonic trap are investigated by using fractional exclusion statistics, and the results are compared with those of the system which satisfies the thermodynamic limit. At zero-temperature, Fermi energy and average energy of per particle increase with the increase of the number of particles for finite unitary Fermi gas, and their limits are the corresponding parameters of the system which satisfy thermodynamic limits. Fermi energy and average energy of per particle each have a maximum value changing with the boundary of the potential well. For the finite-temperature trapped unitary Fermi system, when the number of particles is certain the average energy of per particle, average entropy of per particle, average heat capacity of per particle each have a characteristic temperature, respectively, when the temperature is equal to the characteristic temperature of the physical parameter, the corresponding parameters for the finite system and the thermodynamic limit system are equal, when the temperature is lower (or higher) than the characteristic temperature of parameter, the physical parameter of the finite system will be greater (or less) than the corresponding parameter of the thermodynamic limit system. The characteristic temperature has particle number effect and boundary effect. When the temperature is determined, the average energy of per particle, average entropy of per particle and average heat capacity of per particle each have a characteristic number of particles, respectively, when the number of particles is equal to the characteristic number of particles for physical parameter, the corresponding parameters for the finite system and the thermodynamic limit system are equal, when the number of particles is less (or more) than the characteristic number of particles for corresponding parameter, the corresponding parameter of the finite system will be less (or larger) than the thermodynamic limit of system.
      Corresponding author: Yuan Du-Qi, yuanduqi@163.com
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JM1006).
    [1]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 040403

    [2]

    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F, Salomon C 2004 Phys. Rev. Lett. 93 050401

    [3]

    Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag H J, Grimm R 2004 Phys. Rev. Lett. 92 120401

    [4]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [5]

    Romans M W J, Stoof H T C 2005 Phys. Rev. Lett. 95 260407

    [6]

    Ho T L 2004 Phys. Rev. Lett. 92 090402

    [7]

    Hu H, Drummond P D, Liu X J 2007 Nat. Phys. 3 469

    [8]

    Luo L, Clancy B, Joseph J, Kinast J, Thomas J E 2007 Phys. Rev. Lett. 98 080402

    [9]

    Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296

    [10]

    Luo L, Thomas J E 2009 J. Low Temp. Phys. 154 1

    [11]

    Joseph J, Clancy B, Luo L, Kinast J, Turlapov A, Thomas J E 2007 Phys. Rev. Lett. 98 170401

    [12]

    Papenbrock T 2005 Phys. Rev. A 72 041603

    [13]

    Hu H, Liu X J, Drummond P D 2010 New J. Phys. 12 063038

    [14]

    Bulgac A, Drut J E, Magierski P 2006 Phys. Rev. Lett. 96 090404

    [15]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937

    [16]

    Wu Y S 1994 Phys. Rev. Lett. 73 922

    [17]

    Bhaduri R K, Murthy M V N, Srivastava M K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1775

    [18]

    Qin F, Chen J S 2009 Phys. Rev. A 79 043625

    [19]

    Bhaduri R K, Murthy M V N, Brack M 2008 J. Phys. B : At. Mol. Opt. Phys. 41 115301

    [20]

    Qin F, Chen J S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055302

    [21]

    Qin F, Chen J S 2012 Phys. Lett. A 376 1191

    [22]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [23]

    Sevinli S, Tanatar B 2007 Phys. Lett. A 371 389

    [24]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod.Phys. 71 463

    [25]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [26]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [27]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [28]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [29]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [30]

    Yuan D Q 2014 Acta Phys. Sin. 63 170501 (in Chinese) [袁都奇 2014 63 170501]

    [31]

    Iguchi K 1997 Phys. Rev. Lett. 78 3233

    [32]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [33]

    Ingold G L, Lambrecht A A 1998 Eur. Phys. J. D 1 29

  • [1]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 040403

    [2]

    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F, Salomon C 2004 Phys. Rev. Lett. 93 050401

    [3]

    Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag H J, Grimm R 2004 Phys. Rev. Lett. 92 120401

    [4]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [5]

    Romans M W J, Stoof H T C 2005 Phys. Rev. Lett. 95 260407

    [6]

    Ho T L 2004 Phys. Rev. Lett. 92 090402

    [7]

    Hu H, Drummond P D, Liu X J 2007 Nat. Phys. 3 469

    [8]

    Luo L, Clancy B, Joseph J, Kinast J, Thomas J E 2007 Phys. Rev. Lett. 98 080402

    [9]

    Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296

    [10]

    Luo L, Thomas J E 2009 J. Low Temp. Phys. 154 1

    [11]

    Joseph J, Clancy B, Luo L, Kinast J, Turlapov A, Thomas J E 2007 Phys. Rev. Lett. 98 170401

    [12]

    Papenbrock T 2005 Phys. Rev. A 72 041603

    [13]

    Hu H, Liu X J, Drummond P D 2010 New J. Phys. 12 063038

    [14]

    Bulgac A, Drut J E, Magierski P 2006 Phys. Rev. Lett. 96 090404

    [15]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937

    [16]

    Wu Y S 1994 Phys. Rev. Lett. 73 922

    [17]

    Bhaduri R K, Murthy M V N, Srivastava M K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1775

    [18]

    Qin F, Chen J S 2009 Phys. Rev. A 79 043625

    [19]

    Bhaduri R K, Murthy M V N, Brack M 2008 J. Phys. B : At. Mol. Opt. Phys. 41 115301

    [20]

    Qin F, Chen J S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055302

    [21]

    Qin F, Chen J S 2012 Phys. Lett. A 376 1191

    [22]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [23]

    Sevinli S, Tanatar B 2007 Phys. Lett. A 371 389

    [24]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod.Phys. 71 463

    [25]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [26]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [27]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [28]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [29]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [30]

    Yuan D Q 2014 Acta Phys. Sin. 63 170501 (in Chinese) [袁都奇 2014 63 170501]

    [31]

    Iguchi K 1997 Phys. Rev. Lett. 78 3233

    [32]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [33]

    Ingold G L, Lambrecht A A 1998 Eur. Phys. J. D 1 29

  • [1] Li Yang, Zhang Yan-Hong, Sheng Liang, Zhang Mei, Yao Zhi-Ming, Duan Bao-Jun, Zhao Ji-Zhen, Guo Quan, Yan Wei-Peng, Li Guo-Guang, Hu Jia-Qi, Li Hao-Qing, Li Lang-Lang. Neutron spectrum response of ST401 scintillators with different thicknesses. Acta Physica Sinica, 2024, 73(23): 232401. doi: 10.7498/aps.73.20241198
    [2] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [4] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [5] Zhang Heng, Duan Wen-Shan. The periodic modulation of a Bose-Fermi mixture in double-well trap. Acta Physica Sinica, 2013, 62(16): 160303. doi: 10.7498/aps.62.160303
    [6] Yu Zi-Fa, Wu Jian-Peng, Wang Peng-Cheng, Zhang Jiao-Jiao, Tang Rong-An, Xue Ju-Kui. Collective excitations of superfluid Fermi gas in an anharmonic potential. Acta Physica Sinica, 2012, 61(1): 010301. doi: 10.7498/aps.61.010301
    [7] Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng. Finite size effect of the ballistic depositionmodel with shadowing. Acta Physica Sinica, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [8] Zhao Jian-Hua, Chen Bo, Wang De-Liang. Anharmonic phonon coupling and phonon confinement in nanocrystalline anatase TiO2. Acta Physica Sinica, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [9] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [10] Yu Xue-Cai, Ye Yu-Tang, Cheng Lin. Criterion for validity of potential and limiting atom number in a potential well for Bose-Einstein condensation gas. Acta Physica Sinica, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [11] Wang Chong, Yan Ke-Zhu. Numerical research on critical temperature of Bose-Einstein condensation for gas with interaction in harmonic trap. Acta Physica Sinica, 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [12] Cui Hai-Tao, Wang Lin-Cheng, Yi Xue-Xi. Low-dimensional Bose-Einstein condensation in finite-number trapped atoms. Acta Physica Sinica, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [13] Xie Yan-Bo, Wang Bing-Hong, Quan Hong-Jun, Yang Wei-Song, Wang Wei-Ning. Finite size effect in EZ model. Acta Physica Sinica, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
    [14] YAN KE-ZHU, TAN WEI-HAN. BOSE-EINSTEIN CONDERSATION OF NEUTRAL ATOMS WITH ATTRACTIVE INTERACTION IN A HAR MONIC TRAP. Acta Physica Sinica, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
    [15] ZHANG RUN-DONG, YAN FENG-LI, LI BO-ZANG. HAMILTONIAN OPERATORS CONSTRUCTED FROM TWO KINDS OF FINITE-DEPTH QUANTUM POTENTIAL WELLS WITH TIME-DEPENDENT BOUNDARY CONDITIONS AND THEIR COMPLEX BERRY PHASES. Acta Physica Sinica, 1998, 47(10): 1585-1599. doi: 10.7498/aps.47.1585
    [16] ZHANG HAN-ZHUANG, GAO JIN-YUE. TRANSVERSE DIFFRACTION EFFECTS OF LIGHT FIELDS ON THE GAIN WITHOUT POPULATION INVERSION. Acta Physica Sinica, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
    [17] WU XING一LONG. THE kTH POWER SQUEEZING OF THE FIELD AMPLITUDE IN SQUEEZED NUMBER STATES. Acta Physica Sinica, 1994, 43(9): 1433-1440. doi: 10.7498/aps.43.1433
    [18] WU YING, YAO KAI-LUN. FINITE WAVENUMBER EFFECT ON AC JOSEPHSON CURRENT. Acta Physica Sinica, 1990, 39(8): 132-137. doi: 10.7498/aps.39.132
    [19] DU GONG-HUAN. NONLINEAR THEORY OF PHOTOACOUSTIC EFFECT OF RESTRICTED BEAM. Acta Physica Sinica, 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
    [20] XIONG XIAO-MING, ZHOU SHI-XUN. FINITE CLUSTER STUDIES OF THE FQHE. Acta Physica Sinica, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
Metrics
  • Abstract views:  5772
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2016
  • Accepted Date:  13 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map