搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性

宁利中 张珂 宁碧波 刘爽 田伟利

引用本文:
Citation:

倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性

宁利中, 张珂, 宁碧波, 刘爽, 田伟利

Convection partition and dynamics in inclined Poiseuille-Rayleigh-Bénard flow

Ning Li-Zhong, Zhang Ke, Ning Bi-Bo, Liu Shuang, Tian Wei-Li
PDF
HTML
导出引用
  • 利用流体力学基本方程组的数值模拟, 探讨了具有通过流动的倾斜腔体中普朗特数Pr = 6.99的流体的对流分区与动力学特性. 结果表明, 对于相对瑞利数r = 9, 在通过流动雷诺数Re = 1.5时, 随着腔体倾斜角θ的增加, 系统出现均匀行波对流、非均匀行波对流以及单对流圈斑图; 在通过流动雷诺数Re = 12.5时, 随着腔体倾斜角θ的增加, 系统出现局部行波对流、平行流及局部单对流圈斑图; 进一步, 对通过流动雷诺数Re和腔体倾斜角θ的不同组合情况的数值模拟, 发现在通过流动雷诺数Re和腔体倾斜角θ构成的平面上, 具有通过流动的倾斜腔体中的对流可以分成前述六种斑图区域, 即均匀行波对流区、非均匀行波对流区、单对流圈区、局部行波对流区、平行流区及局部单对流圈区. 研究了不同对流区域对流最大垂直流速wmax和努塞尔数Nu随着时间的变化特性. 探讨了不同对流区域对流振幅A和努塞尔数Nu随着腔体倾斜角θ变化的动力学特性.
    Since Henri Bénard first carried out experiments on convection in the fluid layer heated from below at the beginning of last century, and Lord Rayleigh first analyzed small disturbance theoretically, Rayleigh-Bénard convection has received much attention from many researchers, and has become one of the models to study the spatiotemporal structure, flow stability and dynamic characteristics of convection. The methods of studying the Rayleigh-Bénard convection are divided into experimental research, theoretical analysis and numerical simulation. With the development of computer, the research of numerical simulation has made great progress. Because the Rayleigh-Bénard convection can be accurately described by continuity equation, momentum equation and energy equation of hydrodynamics. Therefore, the numerical simulation based on hydrodynamics equations has aroused a lot of research interest. Based on the classical Rayleigh-Bénard convection, the influence of horizontal flow on the Rayleigh-Bénard convection can be studied by applying horizontal flow to one end of the horizontal cavity. On the other hand, the influence of cavity inclination on Rayleigh-Bénard convection can be studied by considering the variation of inclined angles in the cavity. Some valuable convective properties have been obtained. In order to reveal some new convection structures or phenomena, the effects of cavity inclination and through-flow on Rayleigh-Bénard convection are considered at the same time in this paper.By using the numerical simulation of the basic equations of hydrodynamics, the convection partition and dynamic characteristics of the fluid with Prandtl number Pr = 6.99 in the inclined cavity with through-flows are discussed. The results show that for the reduced Rayleigh number r = 9, the system presents uniform traveling wave convection, non-uniform traveling wave convection and single roll convection pattern at the through-flow Reynolds number Re = 1.5 with the increase of the inclined angle θ in the cavity, that for the through-flow Reynolds number Re = 12.5, the system presents the localized traveling wave convection, parallel flow and localized single roll convection pattern with the increase of the inclined angle θ in the cavity, that furthermore, the numerical simulation of different values of through-flow Reynolds number Re and inclined angle θ in the cavity shows that on the plane composed of through flow Reynolds number Re and inclined angle θ in the cavity, the convection in the inclined cavity with through-flow can be divided into six kinds of pattern regions, namely, uniform traveling wave convection region, non-uniform traveling wave convection region, single roll convection region, localized traveling wave convection region, parallel flow region, and localized single roll convection region. The characteristics of the maximum vertical velocity wmax and Nusselt number Nu of convection varying with time in different convection regions are studied. The dynamic properties of convective amplitude A and Nusselt number Nu in different convective regions varying with inclined angle θ in the cavity are discussed.
      通信作者: 宁碧波, ning_bibo@163.com
    • 基金项目: 国家级-国家自然科学基金项目(10872164)
      Corresponding author: Ning Bi-Bo, ning_bibo@163.com
    [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Watanabe T, Iima M, Nishiura Y 2012 J. Fluid Mech. 712 219Google Scholar

    [4]

    Mercader I, Batiste O, Alonso A,Knobloch E 2010 Fluid Dyn. Res. 42 025505Google Scholar

    [5]

    Mercader I, Batiste O, Alonso A, Knobloch E 2013 J. Fluid Mech. 722 240Google Scholar

    [6]

    宁利中, 余荔, 袁喆, 周洋 2009 中国科学: 物理学 力学 天文学 39 746

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. Sin.: Phys. Mech. Astron. 39 746

    [7]

    宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401Google Scholar

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401Google Scholar

    [8]

    Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662Google Scholar

    [9]

    Jung D, Lucke M 2002 Phys. Rev. Lett. 89 054502Google Scholar

    [10]

    Taraut A V, Smorodin B L, Lucke M 2012 New J. Phys. 14 093055Google Scholar

    [11]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586Google Scholar

    [12]

    宁利中, 王永起, 袁喆, 李开继, 胡彪 2016 科学通报 61 872Google Scholar

    Ning L Z, Wang Y Q, Yuan Z, Li K, Hu B 2016 Chin. Sci. Bull. 61 872Google Scholar

    [13]

    宁利中, 齐昕, 周洋, 余荔 2009 58 2528Google Scholar

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528Google Scholar

    [14]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

    [15]

    宁利中, 刘爽, 宁碧波, 袁喆, 田伟利, 渠亚伟 2017 应用力学学报 34 1086Google Scholar

    Ning L Z, Liu S, Ning B B, Yuan Z, Tian W L, Qu Y W 2017 Chin. J. Appl. Mech. 34 1086Google Scholar

    [16]

    Ning L Z, Qi X, Yuan Z, Shi F 2008 J. Hydrodyn. 20 567Google Scholar

    [17]

    Jung C, Lucke M, Buchel P 1996 Phys. Rev. E 54 1510Google Scholar

    [18]

    胡彪, 宁利中, 宁碧波, 田伟利 2017 科学通报 62 4278Google Scholar

    Hu B, Ning L Z, Ning B B, Tian W L 2017 Chin. Sci. Bull. 62 4278Google Scholar

    [19]

    宁利中, 胡彪, 宁碧波, 田伟利 2016 65 214401Google Scholar

    Ning L Z, Hu B, Ning B B, Tian W L 2016 Acta Phys. Sin. 65 214401Google Scholar

    [20]

    Daniels K E, Bodenschatz E 2002 Phys. Rev. Lett. 88 034501Google Scholar

    [21]

    Daniels K E, Plappb B, Bodenschatz E 2000 Phys. Rev. Lett. 84 5320Google Scholar

    [22]

    Daniels K E, Brausch O, Pesch W, Bodenschatz E 2008 J. Fluid Mech. 597 261Google Scholar

    [23]

    Busse F H, Clever R M 1992 J. Eng. Math 26 1Google Scholar

    [24]

    宁利中, 吴昊, 宁碧波, 田伟利, 宁景昊 2019 应用数学和力学 40 398Google Scholar

    Ning L Z, Wu H, Ning B B, Tian W L, Ning J H 2019 Appl. Math. Mech. 40 398Google Scholar

    [25]

    宁利中, 张珂, 宁碧波, 吴昊, 田伟利 2020 应用力学学报 37 737Google Scholar

    Ning L Z, Zhang K, Ning B B, Wu H, Tian W L 2020 Chin. J. Appl. Mech. 37 737Google Scholar

    [26]

    Patankar S V 1982 Computation of Heat Transfer and Fluid Flow (Minneapolis: University of Minnesota) pp20−30

    [27]

    胡彪, 宁利中, 宁碧波, 田伟利, 吴昊, 宁景昊 2017 水动力学研究与进展 32 336Google Scholar

    Hu B, Ning L Z, Ning B B, Tian W L, Wu H, Ning J H 2017 Chin. J. Hydrodyn. 32 336Google Scholar

  • 图 1  倾斜腔体的流动示意图

    Fig. 1.  Flow diagram in inclined cavity.

    图 2  ${{Re}} = 1.5$${{\theta }} = 10^\circ $时的均匀行波对流 (a) 温度; (b)流线; (c)速度矢量

    Fig. 2.  Uniform traveling wave convection at ${{Re}} = 1.5$ and ${{\theta }} = 10^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector

    图 3  ${{Re}} = 1.5$${{\theta }} = 30^\circ $时的非均匀行波对流 (a) 温度; (b)流线; (c)速度矢量

    Fig. 3.  Non-uniform traveling wave convection at ${{Re}} = 1.5$ and ${{\theta }} = 30^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector

    图 4  ${{Re}} = 1.5$${{\theta }} = 60^\circ $时的单对流圈 (a) 温度; (b)流线; (c)速度矢量

    Fig. 4.  Single roll convection at ${{Re}} = 1.5$ and ${{\theta }} = 60^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector.

    图 5  ${{Re}} = 12.5$${{\theta }} = 1^\circ $时的局部行波对流 (a) 温度; (b)流线; (c)速度矢量

    Fig. 5.  Localized traveling wave convection at ${{Re}} = 12.5$ and ${{\theta }} = 1^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector.

    图 6  ${{Re}} = 12.5$${{\theta }} = 10^\circ $时的平行流动 (a) 温度; (b)流线; (c)速度矢量

    Fig. 6.  Parallel flows at ${{Re}} = 12.5$ and ${{\theta }} = 10^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector.

    图 7  $R{{e}} = 12.5$${{\theta }} = 45^\circ $时的局部单对流圈 (a) 温度; (b)流线; (c)速度矢量

    Fig. 7.  Localized single roll convection at $R{{e}} = 12.5$ and ${{\theta }} = 45^\circ $: (a) Temperature; (b) streamlines; (c) velocity vector.

    图 8  不同对流结构的最大垂直流速的时间演化 (a) Re = 1.5; (b) Re = 12.5

    Fig. 8.  Time evolution of maximum vertical velocity in different convection structures: (a) Re = 1.5; (b) Re = 12.5.

    图 9  不同对流结构的努塞尔数的时间演化 (a) Re = 1.5; (b) Re = 12.5

    Fig. 9.  Time evolution of Nusselt number in different convection structures: (a) Re = 1.5; (b) Re = 12.5.

    图 10  不同对流斑图在倾斜角度$\theta $-雷诺数${{Re}}$平面上的分区

    Fig. 10.  Partition of different convective patterns in the plane $\theta $-${{Re}}$.

    图 11  不同对流结构时A随着${{\theta }}$的变化 (a) Re = 1.5; (b) Re = 12.5

    Fig. 11.  Variation of A in different convection structures with ${{\theta }}$: (a) Re = 1.5; (b) Re = 12.5.

    图 12  不同对流结构时${{Nu}}$随着${{\theta }}$的变化 (a) Re = 1.5; (b) Re = 12.5

    Fig. 12.  Variation of ${{Nu}}$ in different convection structures with ${{\theta }}$: (a) Re = 1.5; (b) Re = 12.5.

    Baidu
  • [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Watanabe T, Iima M, Nishiura Y 2012 J. Fluid Mech. 712 219Google Scholar

    [4]

    Mercader I, Batiste O, Alonso A,Knobloch E 2010 Fluid Dyn. Res. 42 025505Google Scholar

    [5]

    Mercader I, Batiste O, Alonso A, Knobloch E 2013 J. Fluid Mech. 722 240Google Scholar

    [6]

    宁利中, 余荔, 袁喆, 周洋 2009 中国科学: 物理学 力学 天文学 39 746

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. Sin.: Phys. Mech. Astron. 39 746

    [7]

    宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401Google Scholar

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401Google Scholar

    [8]

    Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662Google Scholar

    [9]

    Jung D, Lucke M 2002 Phys. Rev. Lett. 89 054502Google Scholar

    [10]

    Taraut A V, Smorodin B L, Lucke M 2012 New J. Phys. 14 093055Google Scholar

    [11]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586Google Scholar

    [12]

    宁利中, 王永起, 袁喆, 李开继, 胡彪 2016 科学通报 61 872Google Scholar

    Ning L Z, Wang Y Q, Yuan Z, Li K, Hu B 2016 Chin. Sci. Bull. 61 872Google Scholar

    [13]

    宁利中, 齐昕, 周洋, 余荔 2009 58 2528Google Scholar

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528Google Scholar

    [14]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

    [15]

    宁利中, 刘爽, 宁碧波, 袁喆, 田伟利, 渠亚伟 2017 应用力学学报 34 1086Google Scholar

    Ning L Z, Liu S, Ning B B, Yuan Z, Tian W L, Qu Y W 2017 Chin. J. Appl. Mech. 34 1086Google Scholar

    [16]

    Ning L Z, Qi X, Yuan Z, Shi F 2008 J. Hydrodyn. 20 567Google Scholar

    [17]

    Jung C, Lucke M, Buchel P 1996 Phys. Rev. E 54 1510Google Scholar

    [18]

    胡彪, 宁利中, 宁碧波, 田伟利 2017 科学通报 62 4278Google Scholar

    Hu B, Ning L Z, Ning B B, Tian W L 2017 Chin. Sci. Bull. 62 4278Google Scholar

    [19]

    宁利中, 胡彪, 宁碧波, 田伟利 2016 65 214401Google Scholar

    Ning L Z, Hu B, Ning B B, Tian W L 2016 Acta Phys. Sin. 65 214401Google Scholar

    [20]

    Daniels K E, Bodenschatz E 2002 Phys. Rev. Lett. 88 034501Google Scholar

    [21]

    Daniels K E, Plappb B, Bodenschatz E 2000 Phys. Rev. Lett. 84 5320Google Scholar

    [22]

    Daniels K E, Brausch O, Pesch W, Bodenschatz E 2008 J. Fluid Mech. 597 261Google Scholar

    [23]

    Busse F H, Clever R M 1992 J. Eng. Math 26 1Google Scholar

    [24]

    宁利中, 吴昊, 宁碧波, 田伟利, 宁景昊 2019 应用数学和力学 40 398Google Scholar

    Ning L Z, Wu H, Ning B B, Tian W L, Ning J H 2019 Appl. Math. Mech. 40 398Google Scholar

    [25]

    宁利中, 张珂, 宁碧波, 吴昊, 田伟利 2020 应用力学学报 37 737Google Scholar

    Ning L Z, Zhang K, Ning B B, Wu H, Tian W L 2020 Chin. J. Appl. Mech. 37 737Google Scholar

    [26]

    Patankar S V 1982 Computation of Heat Transfer and Fluid Flow (Minneapolis: University of Minnesota) pp20−30

    [27]

    胡彪, 宁利中, 宁碧波, 田伟利, 吴昊, 宁景昊 2017 水动力学研究与进展 32 336Google Scholar

    Hu B, Ning L Z, Ning B B, Tian W L, Wu H, Ning J H 2017 Chin. J. Hydrodyn. 32 336Google Scholar

  • [1] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现.  , 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [2] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [3] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究.  , 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性.  , 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [6] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2021, (): . doi: 10.7498/aps.70.20211549
    [7] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统.  , 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [8] 宁利中, 胡彪, 宁碧波, 田伟利. Poiseuille-Rayleigh-Bnard流动中对流斑图的分区和成长.  , 2016, 65(21): 214401. doi: 10.7498/aps.65.214401
    [9] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性.  , 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [10] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究.  , 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [11] 李春曦, 裴建军, 叶学民. 倾斜粗糙壁面上含不溶性活性剂溶液的动力学特性.  , 2013, 62(21): 214704. doi: 10.7498/aps.62.214704
    [12] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究.  , 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [13] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析.  , 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [14] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现.  , 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [15] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析.  , 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [16] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真.  , 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [17] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析.  , 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [18] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析.  , 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [19] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [20] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制.  , 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
计量
  • 文章访问数:  6024
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-21
  • 修回日期:  2020-03-25
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map