-
Detection of the terahertz (THz) electromagnetic spectrum(wavelengths range 0.03-3 mm) is a promising technique for a large variety of strategic applications, such as biomedical diagnostics and process, quality control, homeland security, and environmental monitoring, etc. Graphene has been recognized internationally to have dominant advantages in photodetectors operating due to its high carrier mobility, gapless spectrum, and frequency-independent absorption coefficient. Graphene photodetector operating in the THz region has been extensively studied with great interests. A graphene microcavity photodetector with THz electromagnetic spectrum is demonstrated in this paper, and its responsivity and detectivity under THz electromagnetic spectrum are evaluated. In the designed device, we adopt a distributed bragger reflection (DBR) consisting of two semiconductor materials SiO2 and TiO2 to form an alternating cavity with high-finesse planar, sandwich the absorbing graphene layer between the cavitys top and bottom layers, and design the DBRs reflectivity by the optical transmission matrix method. The monolayer graphenes optical absorption mechanism of the THz radiation spectrum is studied by the conductivity matrix and Maxwells equations with the electromagnetic boundary conditions. Graphenes transfer matrix and absorption coefficient equation are further derived. It is found that at THz region, graphenes conductivity plays an important role in its absorptionand its absorption is 9-22 times enhanced compared with that at the visible region. An optical absorption model of microcavity-enhanced graphene photodetector at THz region is established. The photodetectors absorption rate and responsitivity are analyzed specifically. Theoretical analysis shows that absorption rate is symmetrical to the microcavitys center position and changes periodically, and the shift of the microcavity length influences the period numbers. The maximum rate of the photodetectors absorption reaches 0.965 at 0.12 THz, which increases 93% compared with its maximum absorption rate 0.5 with no cavity. The optimal structure parameters for the designed photodetector are as follows, the top and bottom mirrors reflectivity are 0.928 and 0.998 respectively, the microcavity length is 2.5 mm, the graphene is 0.035 mm away from the top mirror. Under the optimal structure, the photodetectors responsivity reaches 236.7 A/W, and its full width at half maximum reaches 0.035 THz. The designed graphene microcavity photodetector can exhibit high responsivity and detectivity in THz radiation spectrum.
-
Keywords:
- graphene photodetector /
- microcavity /
- terahertz /
- absorption rate
[1] Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909
[2] Liu S G, Zhong R B 2009 Journal of University of Electronic Science and Technology of China 38 481
[3] Zhang Z L, Mu K J, Zhang C L 2009 Science and Technology 8 11
[4] Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lue J T, Luo H, Laframboise S R, Liu H C 2008 J. Appl. Phys. 104 043101
[5] Williams B S 2007 Nat. Photonics 1 517
[6] Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101
[7] Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103
[8] Zhang R, Guo X G, Cao J C 2011 Acta Phys. Sin. 60 050705 (in Chinese) [张戎, 郭旭光, 曹俊诚 2011 60 050705]
[9] Phaedon A 2010 Nano Lett. 10 4285
[10] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[11] Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401
[12] Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117
[13] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865
[14] Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113
[15] Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114
[16] Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834
[17] Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111
[18] Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906
[19] Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773
[20] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839
[21] Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801 (in Chinese) [邓新华, 刘江涛, 袁吉仁, 王同标 2015 64 057801]
[22] Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103
[23] Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]
[24] Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113
[25] Song S F 2012 Laser & Infrared 42 1367
[26] Zhou Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [周勇 2009 硕士学位论文 (成都: 电子科技大学)]
[27] Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438
-
[1] Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909
[2] Liu S G, Zhong R B 2009 Journal of University of Electronic Science and Technology of China 38 481
[3] Zhang Z L, Mu K J, Zhang C L 2009 Science and Technology 8 11
[4] Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lue J T, Luo H, Laframboise S R, Liu H C 2008 J. Appl. Phys. 104 043101
[5] Williams B S 2007 Nat. Photonics 1 517
[6] Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101
[7] Luo H, Liu H C, Song C Y, Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103
[8] Zhang R, Guo X G, Cao J C 2011 Acta Phys. Sin. 60 050705 (in Chinese) [张戎, 郭旭光, 曹俊诚 2011 60 050705]
[9] Phaedon A 2010 Nano Lett. 10 4285
[10] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[11] Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401
[12] Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117
[13] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865
[14] Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113
[15] Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114
[16] Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834
[17] Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111
[18] Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906
[19] Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773
[20] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839
[21] Deng X H, Liu J T, Yuan J R, Wang T B 2015 Acta Phys. Sin. 64 057801 (in Chinese) [邓新华, 刘江涛, 袁吉仁, 王同标 2015 64 057801]
[22] Dong H M, Zhang J, Peeters F M, Xu W 2009 J. Appl. Phys. 106 043103
[23] Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]
[24] Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113
[25] Song S F 2012 Laser & Infrared 42 1367
[26] Zhou Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [周勇 2009 硕士学位论文 (成都: 电子科技大学)]
[27] Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438
Catalog
Metrics
- Abstract views: 7260
- PDF Downloads: 545
- Cited By: 0